Aeons隱知_神秘學網站(指引社)

楼主: 阿克
打印 上一主题 下一主题

物种起源

[复制链接]
21
 楼主| 发表于 2008-1-20 13:50:23 | 只看该作者
蜂如果遇到一处地方,在那里可以站在适当的位置进行工作时,——例如,站在一块木片上,这木片恰好处于向下建造的一个蜂窠的中央部分之下,那么这蜂案势必就要被营造在这木片的上面,——在这种情形里,蜂便会筑起新的六面体的一堵壁的基部,突出于<敏感詞>已经完成的蜂房之外,而把它放在完全适当的位置。只要蜂能够彼此站在适当的距离并且能够与最后完成的蜂房墙壁保持适当的距离,于是,由于掘造了想像的球形体,它们就足可以在二个邻接的球形体之间造起一堵中间蜡壁来;但据我所看到的,非到那蜂房和邻接的几个蜂房已大部造成之后,它们从不咬去和修光蜂房的角的。蜂在一定环境条件下,能在两个刚开始营造的蜂房中间把一堵粗糙的壁建立在适当位置上,这种能力是重要的;因为这与一项事实有关,最初看来它似乎可以推翻上述理论;这事实就是,黄蜂的最外边缘上的一些蜂房也常常是严格的六边形的;但我在这里没有篇幅来讨论这一问题。我并不觉得单独一个昆虫(例如黄蜂的后蜂)营造六边形的蜂房会有什么大的困难;——如果她能在同时开始了的二个或三个巢房的内侧和外侧交互地工作,经常能与刚开始了的蜂房各部分保持适当的距离,掘造球形或圆筒形,并且建造起中间的平壁,就可以做到上述一点。
  自然选择仅仅在于对构造或本能的微小变异的积累,才能发挥作用,而各个变异都对个体在其生活条件下是有利的。所以可以合理地发问:一切变异了的建筑本能所经历的漫长而级进的连续阶段,都有趋向于现今那样的完善状态,对于它们的祖先,曾起过怎样有利的作用?我想,解答这个问题并不困难:像蜜蜂或黄蜂的蜂房那样建造起来的蜂房,是坚固的,而且节省了很多劳力、空间、以及蜂房的建造材料。为了制造蜡,我们知道,必须采集充足的花蜜,在这方面蜂常常是十分辛苦的,特盖特迈耶先生告诉我说,实验已经证明,蜜蜂分泌一磅蜡须要消耗十二磅到十五磅干糖;所以在一个蜂箱里的蜜蜂为了分泌营造蜂窠所必需的蜡,必须采集并消耗大量的液状花蜜。还有,许多蜂在分泌的过程中,势必有许多天不能工作。大量蜂蜜的贮藏,以维持大群蜂的冬季生活,是必不可缺少的;并且我们知道,蜂群的安全主要决定于大量的蜂得以维持。因此,蜡的节省,便大大节省了蜂蜜,并且节省了采集蜂蜜的时间,这必然是任何蜂族成功的重要因素。当然一个物种的成功还可能决定于它的敌害或寄生物的数量,或者决定于<敏感詞>十分特殊的原因,这些都和蜜蜂所能采集的蜜量全无关系。但是,让我们假定采集蜜量的能力能够决定,并且大概曾经常常决定了一种近似于英国土蜂的蜂类能否在任何一处地方大量存在;并且让我们进一步假定,那蜂群须渡过冬季,结果就需要贮藏蜂蜜;在这种情形下,如果她的本能有微小的变异,引导她把蜡房造得靠近些,略略彼此相切,无疑将会有利于我们所想像的这种土蜂的;因为一堵公共的壁即使仅连接二个蜂房,也会节省少许劳力和蜡。因此,如果它们蜂房造得日益整齐,日益靠近,并且像墨西哥蜂的蜂房那样聚集在一起,这就会不断地日益有利于这种土蜂;因为在这种情形下,各个蜂房的大部分境壁将会用作邻接蜂房的壁,于是就可以大大节省劳力和蜡。还有,由于同样的原因,如果墨西哥蜂能把蜂房造得比现在的更为接近些,并且在任何方面都更为规则些,这对于她是有利的;因为,如我们所看到的,蜂房的球形面将会完全消失,而代以平面了;而墨西哥蜂所造的蜂窠大概就会达到蜜蜂窠那样完善的地步。在建造上超越这种完善的阶段,自然选择便不能再起作用;因为蜜蜂的蜂窠,据我们知道,在经济使用劳力和蜡上是绝对完善的。
  因此,如我所相信的,这种一切既知本能中最奇异的本能———蜜蜂的本能,是可以根据以下的情形来解释的:自然选择曾经利用比较简单本能之无数的、连续发生的微小变异;自然选择曾经徐缓地、日益完善地引导蜂在双层上掘造彼此保持一定距离的、同等大小的球形体,并且沿着交切面筑起和凿掘蜡壁;当然,蜂是不会知道它们自己在彼此保持一定距离间掘造球形体,正如它们不会知道六面柱体的角以及底部的菱形板的角有若干度;自然选择过程的动力在于使蜂房造得有适当的强度和适当的容积和形状,以便容纳幼虫,最大可能地经济使用劳力和蜡使之完成;每一蜂群如果能够这样以最小的劳力,并且在蜡的分泌上消耗最少的蜜,来营造最好的蜂房,那么它们就能得到最大的成功,并且还会把这种新获得的节约本能传递给新蜂群,这些新蜂群在它们那一代,在生存斗争中就会获得最大成功的机会。

  反对把自然选择学说应用在本能上的意见:中性的和不育的昆虫

  曾经有人反对上述本能起源的观点,他们说,“构造的和本能的变异必须是同时发生的,而且是彼此密切协调的,因为变异如果在一方面发生而在另一方面没有相应的变化,这种变异将是致死的”。这种异议的力量全然建筑在本能和构造是突然发生变化这种假设上面的。前章说过的大荏雀(Parus maior)可以做一个例子;这种鸟常在树枝上用脚挟住紫杉类的种籽,用喙去啄,直到把它的仁啄出来。这样,自然选择便把喙的愈来愈适于啄破这种种籽的一切微小变异都保存下来,一直到像十分适于这种目的的五十雀(nuthatch)的那样喙的形成,同时,习性或者强制、或者嗜好的自发变异也引异了这种鸟日益变成为吃种籽的鸟,关于这样解释,又有什么特别困难呢?在这个例子中,设想先有习性或嗜好的缓慢变化,然后通过自然选择,喙才慢慢地发生改变,这种改变是与嗜好或习性的改变相一致的。但是假定荏雀的脚,由于与喙相关,或者由于<敏感詞>任何未知的原因,变异了而且增大了,这种增大的脚,井非不可能引导这种鸟变得愈来愈能攀爬,而终于使它获得了像五十雀那样显著的攀爬本能和力量。在这种情形里,是假定构造的逐渐变化引起了本能的习性发生变化的。再举一例:东方诸岛(Eastern lslands)的雨燕(Swift)完全用浓化的唾液来造巢,很少有比这种本能更为奇异的了。某些鸟用泥土造巢,可以相信在泥土里混合着唾液;北美洲有一种雨燕(如我所看到的)用小枝沾上唾液来造巢,甚至用这种东西的屑片沾上唾液来造巢。于是,对分泌唾液愈来愈多的雨燕个体的自然选择,就会最后产生出一个物种,这个物种具有忽视<敏感詞>材料而专用浓化唾液来造巢的本能,难道说这是很不可能的吗?<敏感詞>情形亦复如是。然而必须承认,在许多事例里,我们无法推测最初发生变异的究竟是本能还是构造。
  无疑还可用许多极难解释的本能来反对自然选择学说——例如有些本能,我们不知道它是怎样起源的;有些本能,我们不知道它有中间级进存在;有些本能是如此地不重要,以致自然选择不大会对它发生作用;有些本能在自然系统相距甚远的动物里竞几乎相同,以致我们不能用共同祖先的遗传来说明它们的相似性,结果只好相信这些本能是通过自然选择而被独立获得的。我不预备在这里讨论这几个例子,但我要专门讨论一个特别的难点,这个难点,当初我认为是解释不通的,并且实际上对于我的全部学说是致命的。我所指的就是昆虫<敏感詞>里的中性的即不育的雌虫;因为这些中性虫在本能和构造上常与雄虫以及能育的雌虫有很大的差异,而且由于不育,它们不能繁殖它们的种类。
  这个问题十分值得详细地来讨论,但我在这里只拟举一个例子,即不育的工蚁的例子。工蚁怎么会变为不育的个体是一个难点;但不比构造上任何别种显著变异更难于解释;因为可以阐明,在自然状态下某些昆虫以及别种节足动物偶尔也会变为不育的;如果这等昆虫是<敏感詞>性的,而且如果每年生下若干能工作的、但不能生殖的个体对于这个群体是有利的话,那末我认为不难理解这是由于自然选择的作用。但我必须省略这种初步的难点不谈。最大的难点是在于工蚁与雄蚁和能育的雌蚁在构造上有巨大的差异。如工蚁具有不同形状的胸部,缺少翅膀,有时没有眼睛,并且具有不同的本能。单以本能而论,蜜蜂可以极好地证明工蜂与完全的雌蜂之间有可惊的差异,如果工蚁或别种中性虫原是一种正常的动物,那么我就会毫不迟疑地假定,它的一切性状都是通过自然选择而慢慢获得的;这就是说,由于生下来的诸个体都具有微小的有利变异,这些变异又都遗传给了它们的后代;而且这些后代又发生变异,又被选择,这样继续不断地进行下去。但是工蚁和双亲之间的差异很大,是绝对不育的,所以它决不能把历代获得的构造上或本能上的变异遗传给后代。于是可以问:这种情形怎么能够符合自然选择的学说呢?
  第一,让我们记住,在家养生物和自然状态下的生物里,被遗传的构造的各种各样差异是与一定年龄或性别相关的,在这方面我们有无数的事例。这些差异不但与某一性相关,而且与生殖系统活动的那一短暂时期相关,例如,许多种雄鸟的求婚羽,以及雄马哈鱼的钩曲的颚,都是这种情形。公牛经人工去势后,不同品种的角甚至相关地表现了微小的差异,因为某些品种的去势公牛,在与同一品种的公牝双方的角长的比较上,比<敏感詞>一些品种的去势公牛,具有更长的角,因此,我认为昆虫<敏感詞>里的某些成员的任何性状变得与它们的不育状态相关,并不存在多大难点:难点在于理解这等构造上的相关变异怎样被自然选择的作用而慢慢累积起来。
  这个难点虽然表面上看来是难以克服的,可是只要记住选择作用可以应用于个体也可以应用于全族,而且可以由此得到所需要的结果,那么这个难点便会缩小,或者如我所相信的,便会消除。养牛者喜欢肉和脂肪交织成大理石纹的样子;具有这种特性的牛便被屠杀了。但是养牛者有信心继续培育同样的牛,并且得到了成功,这种信念是建筑在这样的选择力量上的:只要我们仔细注意什么样的公牛和牝牛交配才能产生最长角的去势公牛,大概就会获得经常产生异常长角的去势公牛的一个品种,虽然没有一只去势的牛曾经繁殖过它的种类。这里有一个更好而确切的例证:据佛尔洛特(M.Verlot)说,重瓣的一年生紫罗兰(Stock)的某些变种,由于长期地和仔细地被选择到适当的程度,便会经常产生大量实生苗,开放重瓣的、完全不育的花,但是它们也产生若干单瓣的、能育的植株。只有这等单瓣植株才能繁殖这个变种,它可以与能育的雄蚁和雌蚁相比拟,重瓣而不育的植株可以与同群中的中性虫相比拟。无论对于紫罗兰的这些品种,或是对于<敏感詞>性的昆虫,选择,为了达到有利的目的,不是作用于个体,而是作用于全族。因此,我们可以断言,与同群中某些成员的不育状态相关的构造或本能上的微小变异,被证明是有利的:结果能育的雄体和雌体得到了繁生,并把这种倾向——产生具有同样变异的不育的成员——传递给能育的后代。这一过程,一定重复过许多次,直到同一物种的能育的雌体和不育的雌体之间产生了巨大的差异量,就像我们在许多种<敏感詞>性昆虫里所见到的那样。
  但我们还没有接触到难点的高峰;这就是,有几种蚁的中性虫不但与能育的雌虫和雄虫有所差异,而且它们彼此之间也有差异,有时甚至差异到几乎不能相信的程度,并且因此被分作二个级(castes)或甚至三个级。还有,这些级,普通并不彼此逐渐推移,却区别得十分清楚;彼此区别有如同属的任何二个物种,或同科的任何二个属那样,例如,埃西顿(Eciton)蚁的中性的工蚁和兵蚁具有异常不同的颚和本能:隐角蚁(Cryptocerus)只有一个级的工蚁,它们的头上生有一种奇异的盾,至于它的用途还完全不知道;墨西哥的蜜蚁(Myrmecocystus)有一个级的工蚁,它们永不离开窠穴,腹部发达得很大,能分泌出一种蜜汁,以代替蚜虫所排泄的东西,蚜虫或者可以被称为蚁的乳牛,欧洲的蚁常把它们圈禁和看守起来的。
  如果我不承认这种奇异而十分确实的事实即刻可以颠覆这个学说,人们必然会想,我对自然选择的原理过于自负地相信了。如果中性虫只有一个级,我相信它与能育的雄虫和雌虫之间的差异是通过自然选择得到的,在这种比较简单的情形里,根据从正常变异的类推,我们可以断言,这种连续的、微小的、有利的变异,最初并非发生于同一集中的所有中性虫,而只发生于某些少数的中性虫;并且,由于这样的群——在那里雌体能够产生极多的具有有利变异的中性虫——能够生存,一切中性虫最终就都会具有那样的特性。按照这种观点,我们应该在同一集中偶尔发见那些表现有各级构造的中性虫;实际我们是发见了,鉴于欧洲以外的中性昆虫很少被仔细检查过,这种情形甚至可以说并不稀罕。史密斯先生曾经阐明,有几种英国蚁的中性虫彼此在大小方面,有时在颜色方面,表现了可惊的差异;并且在两极端的类型之间,可由同集中的一些个体连接起来:我曾亲自比较过这一种类的完全级进情形,有时可以看到,大形的或小形的工蚁数目最多;或者大形的和小形的二种都多,而中间形的数目却很少。黄蚁有大形的和小形的工蚁,中间形的工蚁则很少;如史密斯先生所观察的,在这个物种里,大形的工蚁有单眼(ocelli),这些单眼虽然小。但还能够清楚地被辨别出来,而小形的工蚁的单眼则是残迹的。仔细地解剖了几只这等工蚁之后,我能确定小形的工蚁的眼睛,比我们能够用它们的大小比例来解释的,还要远远地不发育;并且我充分相信,虽然我不敢很肯定地断言,中间形工蚁的单眼恰恰处在中间的状态。所以,一个集内的两群不育的工蚁,不但在大小上,并且在视觉器官上,都表现了差异,然而它们是被某些少数中间状态的成员连接起来的。我再补充几句题外的话,如果小形的工蚁对于蚁群最有利,则产生愈来愈多的小形工蚁的雄蚁和雌蚁必将不断地被选择,直到所有的工蚁都具有那种形态为止。于是就形成了这样一个蚁种,它们的中性虫差不多就像褐蚁属(Myrmica)的工蚁那样。褐蚁属的工蚁甚至连残迹的单眼都没有,虽然这个属的雄蚁和雌蚁都生有很发达的单眼。
  我再举一例:在同一物种的不同级的中性虫之间,我非常有信心地期望可以偶尔找到重要构造的中间诸级,所以我很高兴利用史密斯先生所提供的取自西非洲驱逐蚁(Anonma)的同窠中的许多标本。我不举实际的测量数字,而只做一个严格精确的说明,我想读者大概就能最好地了解这等工蚁之间的差异量;这差异就好像以下的情形:我们看到一群建筑房屋的工人,其中有许多是五英尺四英寸高,还有许多是十六英尺高;但我们必须再假定那大个儿工人的头比小个儿工人的头不止大三倍,却要大四倍,而颚则差不多要大五倍。再者,几种大小不同的工蚁的颚不仅在形状上有可惊的差异,而且牙齿的形状和数目也相差悬殊。但对于我们重要的事实却是,虽然工蚁可以依大小分为不同的数级,然而它们却缓慢地彼此逐渐推移,例如,它们的构造大不相同的颚就是这样。关于后面一点,我确信就是如此,因为芦伯克爵士曾用描图器把我所解剖的几种大小不同的工蚁的颚逐一作图。贝茨先生(Mr.Bates)在他的有趣的著作《亚马逊河上的博物学者》(Naturalist ontlie Amazons)里也曾描述过一些类似的情形。
  根据摆在我面前的这些事实,我相信自然选择,由于作用于能育的蚁,即它的双亲,便可以形成一个物种,专门产生体形大而具有某一形状的颚的中性虫,或者专门产生体形小而大不相同的颚的中性虫;最后,这是一个最大的难点,具有某一种大小和构造的一群工蚁和具有不同大小和构造的另一群工蚁,是同时存在的;——但最先形成的是一个级进的系列,就像驱逐蚁的情形那样,然后,由于生育它们的双亲得到生存,这系列上的两极端类型就被产生的愈来愈多,终至具有中间构造的个体不再产生。
  华莱斯和米勒两位先生曾对同样复杂的例子提出了类似的解释,华莱斯的例子是,某种马来产的蝴蝶的雌体规则地表现了两种或三种不同的形态;米勒的例子是,某种巴西的甲壳类的雄体同样地也表现了两种大不相同的形态。但在这里无需讨论这个问题。现在我已解释了,如我所相信的:在同一案里生存的、区别分明的工蚁两级——它们不但彼此之间大不相同,并且和双亲之间也大不相同——的奇异事实,是怎样发生的。我们可以看出,分工对于文明人是有用处的,依据同样的原理,工蚁的生成,对于蚁的<敏感詞>也有很大用处。不过蚁是用遗传的本能和遗传的器官即工具来工作的,人类则用学得的知识和人造的器具来做工的。但是我必须坦白承认,我虽然完全相信自然选择,若不是有这等中性虫引导我达到这种结论,我决不会料到这一原理是如此高度地有效。所以,为了阐明自然选择的力量,并且因为这是我的学说所遭到的特别严重的难点,我对于这种情形作了稍多的、但全然不够的讨论。这种情形也是很有趣的,因为它证明在动物里,如同在植物里一样,由于把无数的、微小的、自发变异一一只要是稍微有利的一一累积下来,纵使没有锻炼或习性参加作用,任何量的变异都能产生效果。因为,工蚁即不育的雌蚁所独有的特别习性,纵使行之已久,也不可能影响专事遗留后代的雄体和能育的雌体。我觉得奇怪的是,为什么至今没有人用这种中性虫的明显例子去反对众所熟知的拉马克所提出的“习性遗传”的学说。

  提要

  我已勉力在这一章里简要地指出了家养动物的精神能力是变异的,而且这等变异是遗传的。我又试图更为简要地阐明本能在自然状态下也是轻微地变异着的。没有人会否定本能对于各种动物都具有最高度的重要性。所以,在改变了的生活条件下,自然选择把任何稍微有用的本能上的微小变异,累积到任何程度,其中并不存在什么真正的难点。在许多情形下,习性或者使用和不使用大概也参加作用。我不敢说本章里所举出的事实能够把我的学说加强到很大的程度;但是根据我所能判断的,没有一个难解的例子可以颠覆我的学说。相反地,本能并不经常是绝对完全的,而且是易致错误的——虽然有些动物可以利用<敏感詞>一些动物的本能,但没有一种本能可说是为了<敏感詞>动物的利益而被产生的——自然史上的一句格言“自然界里没有飞跃”,就像应用于身体构造那样地也能应用于本能,并且可用上述观点来清楚地解释它,如果不是这样,它就是不能解释的了,——所有这些事实都巩固了自然选择的学说。
  这个学说也固<敏感詞>几种关于本能的事实而被加强;例如,密切近似的但不相同的物种,当栖息在世界上的远隔的地方并且生活在相当不同的生活条件之下时,常常保持了几乎同样的本能。例如,根据遗传的原理,我们能够理解,为什么热带南美洲的工鸫英国的特别造巢方法那样地用泥来涂抹它们的巢;为什么非洲和印度的犀鸟(hornbill)有同样异常的本能,用泥把树洞封住,把雌鸟关闭在里面,在封口处只留一个小孔,以便雄鸟从这里哺喂雌鸟和孵出的幼鸟;为什么北美洲的雄性鹤鹩(Troglodytes)像英国的雄性猫形鹤鹩(Kitty-wrens)那样地营造“雄鸟之巢”,以便在那里栖息,——这种习性完全不像任何<敏感詞>已知鸟类的习性。最后,这可能是不合逻辑的演绎,但据我想像,这样说法最能令人满意,即:把本能,如一只小杜鹃把义兄弟逐出巢外,------蚁养奴隶,-----姬蜂科(ichneumonidx)幼虫寄生在活的青虫体内,不看作是被特别赋予的或被特别创造的,而把它看作是引导一切生物进化一一即,繁生、变异、让最强者生存、最弱者死亡——的一般法则的小小结果。
回复

使用道具 举报

22
 楼主| 发表于 2008-1-20 13:51:22 | 只看该作者
第九章 杂种性质
第一次杂交不育性和杂种不育性的区别——不育性具有种种不同的程度,它不是普遍的,近亲交配对于它的影响,家养把它消除——支配杂种不育性的法则——不育性不是一种特别的禀赋,而是伴随不受自然选择累积作用的<敏感詞>差异而起的一一第一次杂交不育性和杂种不育性的原因——变化了的生活条件的效果和杂交的效果之间的平行现象——二型性和三型性——变种杂交的能育性及混种后代的能育性不是普遍的——除了能育性以外,杂种和混种的比较——提要。
  博物学者们普通抱有一种观点,认为一些物种互相杂交,被特别地赋予了不育性,借以阻止它们的混杂。最初看来,这一观点似乎的确是高度确实的,因为一些物种生活在一起,如果可以自由杂交,很少能够保持不混杂的。这一问题在许多方面对于我们都是重要的,特别是因为第一次杂交时的不育性以及它们的杂种后代的不育性,如我将要示明的,并不能由各种不同程度的、连续的、有利的不育性的保存而获得。不育性是亲种生殖系统中所发生的一些差异的一种偶然结果。
  在讨论这一问题时,有二类基本很不相同的事实,一般却被混淆在一起;即:物种在第一次杂交时的不育性,以及由它们产生出来的杂种的不育性。
  纯粹的物种当然具有完善的生殖器官,然而当互相杂交时,它们则产生很少的后代,或者不产生后代。另一方面,无论从动物或植物的雄性生殖质都可以明显地看出,杂种的生殖器官在机能上已失去了效能;虽然它们的生殖器官本身的构造,在显微镜下看来还是完善的。在上述第一种情形里,形成胚体的雌雄性生殖质是完善的,在第二种情形里,雌雄性生殖质或者是完全不发育,或者是发育得不完全。当必须考虑上述二种情形所共有的不育性的原因时,这种区别是重要的。由于把这二种情形下的不育性都看作是并非我们的理解能力所能掌握的一种特别禀赋,这种区别大概就要被忽略了。
  变种——即知道是或相信是从共同祖先传下来的类型一一杂交时的能育性,以及它们的杂种后代的能育性,对于我的学说,与物种杂交时的不育性,有同等的重要性;因为这似乎在物种和变种之间划出了一个明确而清楚的区别。
  不育性的程度——第一是关于物种杂交时的不育性以及它们的杂种后代的不育性。科尔路特和该特纳这二位谨慎的和值得称赞的观察者几乎用了一生时间来研究这个问题,凡是读过他们的几篇研究报告和著作的,不可能不深深感到某种程度的不育性是非常普遍的,科尔路特把这个规律普遍化了。可是在十个例子中,他发见有两个类型,虽被大多数作者看作是不同物种,在杂交时却是十分能育的,于是他采取快刀斩乱麻的方法,毫不犹豫地把它们列为变种。该特纳也把这个规律同等地普遍化了;并且他对科尔路特所举的十个例子的完全能育性有所争论。但是在这些和许多<敏感詞>一些例子里,该特纳不得不谨慎地去数种籽的数目,以便指出其中有任何程度的不育性,他经常把二个物种第一次杂交时所产生的种籽的最高数目以及它们的杂种后代所产生的种籽的最高数目,与双方纯粹的亲种在自然状态下所产生的种籽的平均数目相比较。但是严重错误的原因便在这里侵入了:进行杂交的一种植物,必须去势,更重要的是必须隔离,以便防止昆虫带来<敏感詞>植物的花粉。该特纳所试验的植物几乎全都是盆栽的,放置在他的住宅的一间屋子里。这些做法无疑常常会损害一种植物的能育性;因为该特纳在他的表中所举出的约有二十个例子的植物,都被去势了,并且以它们自己的花粉进行人工授粉(一切荚果植物除外,对它们难施手术),这二十种植物的一半,在能育性上都受到了某种程度的损害。还有,该特纳反复使普通的红花海绿(AnagallisarvensiS)和蓝花海绿(Anagallis corerulea)进行杂交,这些类型曾被最优秀的植物学家们列为变种,发见它们是绝对不育的。我们可以怀疑是否许多物种当互相杂交时,如他所相信的,的确如此不育。
  事情确是这样的:一方面,各个不同物种杂交时的不育性,在程度上是这样不相同,并且是这样不易觉察地逐渐消失;另一方面,纯粹物种的能育性是这样易受各种环境条件的影响,以致为着实践的目的,极难说出完全的能育性是在何处终止的,而不育性又在何处开始的。关于这一点,我想没有比最有经验的二位观察者科尔路特和该特纳所提出的证据更为可靠的了,他们对于某些完全一样的类型曾得出正相反的结论。关于某些可疑类型究应列为物种或变种的问题,试把最优秀的植物学家们提出的证据,与不同的杂交工作者从能育性推论出来的证据、或同一观察者从不同年代的试验中所推论出来的证据加以比较,也是最有意义的,但是我在这里没有篇幅来详细说明这一点。由此可以示明,无论不育性或能育性都不能在物种和变种之间提供任何确定的区别。从这一来源所得出的证据逐渐减弱,其可疑的程度正如从<敏感詞>体质上和构造上的差异所得出的证据。
  关于杂种在连续世代中的不育性,虽然该特纳谨慎地防止了一些杂种和纯种的父母本相杂交,能够把它们培育到六代或七代,在一个例子里甚至到十代,但是他肯定地说道,它们的能育性从没有增高,而一般却大大地和突然地降低了。关于这一降低的情形,首先可注意的是,当双亲在构造上或体质上共同出现任何偏差时,它就常常会以扩增的程度传递给后代;而且杂种植物的雌雄生殖质在某种程度上也受到了影响。但是我相信它们的能育性的减低在几乎所有的情形下都是由于一个独立的原因,即过于接近的近亲交配。我曾做过许多试验并且搜集到许多事实,一方面阐明了与一个不同的个体或变种进行偶然的杂交,可以增高后代的生活力和能育性,另一方面阐明了很接近的近亲交配可以减低他们的生活力和能育性,这个结论的正确性是无可置疑的。试验者们很少培育出大量的杂种;并且因为亲种,或<敏感詞>近缘杂种一般都生长在同一园圃内,所以在开花季节必须谨慎防止昆虫的传粉;所以,如果杂种独自生长,在每一世代中一般地便会由自花的花粉而受精;它们的能育性本已由于杂种根源而降低,因此可能更受到损害。该特纳反复做过的一项值得注意的叙述,加强了我的这一信念,他说,对于甚至能育性较低的杂种,如果用同类杂种的花粉进行人工授精,不管由手术所常常带来的不良影响,它们的能育性往往还是决定增高的,而且会继续不断地增高。现在,在人工授粉的过程中,偶然地从另一朵花的花药上采取花粉,犹如常常从准备被受精的一朵花的花药上采取花粉一样地是常见的事(根据我的经验,我知道是这样的);所以,两朵花,纵使大概常常是同一植株上的两朵花的杂交,就这样进了。还有,无论什么时候进行复杂的试验,像如此谨慎的观察者该特纳也要把杂种的雄蕊去掉,这就可以在每一世代中保证用异花的花粉进行杂交,这异花或者来自同一植株,或者来自同一杂种性质的另一植株。因此,我相信,与自发的自花受精正相反,人工授精的杂种在连续世代中可以增高它的能育性,这一奇异的事实,是可以根据避去了过于接近的近亲交配来解释的。
  现在让我们谈一谈第三位极有经验的杂交工作者赫伯特牧师所得到的结果。在他的结论中他强调某些杂种是完全能育的——与纯粹亲种一样地能育——就像科尔路特和该特纳强调不同物种之间存在着某种程度的不育性是普遍的自然法则一样。他对于该特纳曾经试验过的完全同样的一些物种进行了试验。他们的结果之所以不同,我想一方面是由于赫伯特的伟大的园艺技能,一方面是由于他有温室可供应用。在他的许多重要记载中,我只拟举出一项作为例子,即:“在长叶文殊兰(Crinum capense)①的蒴中的各个胚珠上授以卷叶文殊兰(c·revolutum)的花粉,就会产生一个在它的自然受精情形下我从未看见过的植株。”所以在这里我们看到,两个不同物种的第一次杂交,就会得到完全的或者甚至比普通更完全的能育性。文殊兰属的这个例子引导我想起一个奇妙的事实,即半边莲属(Lobelia)、毛蕊花属(Verbascum)、西番莲属(Passif1ora)的某些物种的个体植物,容易用不同物种的花粉来受精,但不易用同一物种的花粉来受精,虽然这花粉在使<敏感詞>植物或物种的受精上被证明是完全正常的。如希尔德布兰德教授(Prof.Hildebrand)所阐明的,在朱顶红属(Hippeastrum)和紫堇属(Corydalis)里,又如斯科特先生(Mr·Scott)和米勒先生所阐明的,在各种兰科植物里,一切个体都有这种特殊的情形。所以,对于某些物种的一些异常的个体以及<敏感詞>物种的一切个体,比用同一个体植株的花粉来授精,实际上更容易产生杂种!兹举一例,朱顶红(Hippeastrum aulicum)的一个鳞茎开了四朵花,赫伯特在其中的三朵花上授以它们自己的花粉,使它们受精,然后在第四朵花上授以从三个不同物种传下来的一个复杂种(Compound hybrid)的花粉,使它受精,其结果是:“那三朵花的子房很快就停止生长,几天之后完全枯萎,至于由杂种花粉来受精的蒴则生长旺盛,迅速达到成熟,并且结下能够自由生长的优良种籽。”赫伯特先生在很多年里重复了同一试验,永远得到同样的结果。这些例子可以阐明,决定一个物种能育性的高低,其原因常常是何等的微细而不可思议。
  园艺家的实际试验,虽然缺少科学的精密性,但也值得相当注意。众所周知,在天竺葵属、吊金钟属(Fuchsia)、蒲包花属(Calceolaria)、矮牵牛属(Petunia)、杜鹃花属等等的物种之间,曾经进行过何等复杂方式的杂交,然而许多这些杂种都能自由地结籽。例如,赫伯特断言,从绉叶蒲包花(Calceolaria integrifolia)和车前叶蒲包花(calceolaria plantaginea)——这是二个在习性上颇不相同的物种——得到的一个杂种,“它们自己完全能够繁殖,就好像是来自智利山中的一个自然物种”。我曾煞费苦心来探究杜鹃花属的一些复杂杂交的能育性的程度,我可以确定地说,其中多数是完全能生育的。诺布尔先生(Mr.C.Noble)告诉我,他曾把小亚细亚杜鹃(Rhod.ponticum)和北美山杜鹃(Rhod.catawbiense)之间的一个杂种嫁接在某些砧木上,这个杂种“有我们所可能想像的自由结籽的能力”。杂种在正当的处理下,如果它的能育性在每一连续世代中经常不断地减低,如该特纳所相信的那样,那未这一事实早已被艺园者所注意了。园艺家们把同一个杂种培育在广大园地上,只有这样才是正当的处理,因为由于昆虫的媒介作用,若干个体可以彼此自由地进行杂交,所以阻止了接近的近亲交配的有害影响。只要检查一下杜鹃花属杂种的比较不育的花,任何人都会容易地相信昆虫媒介作用的效力了,它们不产生花粉,而在它们的柱头上却可以发见来自异花的大量花粉。
  对动物所进行的仔细试验,远比对植物为少。如果我们的分类系统是可靠的,这就是说,如果动物各属彼此之间的区别程度就(318缺一段)育性而言,我几乎不知道一个事例可以表明,从不同父母同时培育出同一杂种的两个家族,可以避免接近的近亲交配的恶劣影响。相反地,动物的兄弟姊妹通常却在每一连续世代中进行杂交,以致违背了每一个饲养家反复不断提出的告诫。在这种情形下,杂种固有的不育性将会继续增高,是完全不足为奇的。
  虽然我不能举出彻底可靠的例子,以说明动物的杂种是完全能育的,但是我有理由相信凡季那利斯羌鹿(Cervulus vaginalis)和列外西羌鹿(Reevesii)之间的杂种以及东亚雉(Phasianuscolchicus)和环雉(P.torquatus)之间的杂种是完全能育的。卡特勒法热(M·Quatrefages)说,有二种蚕蛾(柞蚕[Bombyx cynthia〕和阿林地亚蚕[arrindia]的杂种在巴黎被证明自相交配达八代之久,仍能生育。最近有人确定他说过,二个如此不同的物种,如山兔和家兔,如果互相杂交,也能产生后代,这些后代与任何一个亲种进行杂交,都是高度能育的。欧洲的普通鹅和中国鹅(A,cygnoides),是如此不同的物种,一般都把它们列为不同的属,它们的杂种与任何一个纯粹亲种杂交,常常是能育的,并且在一个仅有的例子里,杂种互相交配,也是能育的。这是艾顿先生的成就,他从同一父母培育出二只杂种鹅,但不是同时孵抱的;他从这二只杂种鹅又育成一窠八个杂种(是当初两只纯种鹅的孙代)。然而,在印度这些杂种鹅一定更是能育的;因为布莱斯先生和赫顿大尉告诉我,印度到处饲育着这样的杂种鹅群;因为在纯粹的亲种已不存在的地方饲育它们是为了谋利,所以它们必定是高度地或者完全地能育的。
  至于我们的家养动物,各个不同的族互相杂交,都是十分能育的;然而在许多情形下,它们是从二个或二个以上的野生物种传下来的。根据这一事实,我们可以断言,如果不是原始的亲种一开头就产生了完全能育的杂种,那么就是杂种在此后的家养状况下变为能育的。后一种情形,是由帕拉斯最初提出的,它的可能性似乎最大,确是很少值得怀疑。例如,我们的狗是从几种野生祖先传下来的,几乎已经是肯定的了;大概除去南美洲的某些原产的家狗,所有的家狗互相杂交,都是十分能育的;但类推起来使我大大怀疑这几个原始的物种是否在最初曾经互相杂交,而且产生了十分能育的杂种。最近我再一次得到决定性的证明,即是印度瘤牛与普通牛的杂交后代,互相交配是完全能育的;而根据卢特梅耶对于它们的骨骼的重要差异的观察,以及布莱斯先生对于它们的习性、声音、体质的差异的观察,这二个类型必须被认作是真正不同的物种。同样的意见可以引伸到猪的二个主要的族。所以我们必须是,如果不放弃物种在杂交时的普遍不育性的信念;便应承认动物的这种不育性不是不可消除的,而是可以在家养状况下被消除的一种特性。
  最后,根据植物的和动物的互相杂交的一切确定事实,我们可以得出结论,第一次杂交及其杂种具有某种程度的不育性,乃是极其普遍的结果;但根据我们目前的知识而言,却不能认为这是绝对普遍的。

  支配第一次杂交不育性和杂种不育性的法则

  关于支配第一次杂交不育性和杂种不育性的法则,我们现在要讨论得详细一些。我们的主要目的在于看一看,这些法则是否表示了物种曾被特别地赋予了这种不育的性质,以阻止它们的杂交和混乱。下面的结论主要是从该特纳的可称赞的植物杂交工作中得出来的。我曾煞费苦心来确定这些法则在动物方面究竟能应用到什么地步,因为考虑到我们关于杂种动物的知识极其贫乏,我惊奇地发见这些同样的规律是如此普遍地能够在动物界和植物界里应用。
  已经指出,第一次杂交能育性和杂种能育性的程度,是从完全不育逐渐级进到完全能育。令人惊奇的是,这种级进可由很多奇妙的方式表现出来;但是在这里我只能提出事实的最简略概要。如果把某一科植物的花粉放在另一科植物的柱头上,其所能发生的影响并不比无机的灰尘为大。从这种绝对不育起,把不同物种的花粉放在同属的某一物种的柱头上,可以产生数量不同的种子,而形成一个完全系列的级进,直到几乎完全能育或者甚至十分完全能育;并且我们知道,在某些异常的情形下,它们甚至有过度的能育性,超过用自己花粉所产生的能育性。杂种也是如此,有些杂种,甚至用一个纯粹亲种的花粉来受精,也从来没有产生过、大概永远也不会产生出一粒能育的种籽:但在某些这等例子里,可以看出能育性的最初痕迹,即以一个纯粹亲种的花粉来受精,可以致使杂种的花比不如此受粉的花凋谢较早;而花的早谢为初期受精的一种征兆,是众所熟知的。从这种极度的不育性起,我们有自交能育的杂种,可以产生愈来愈多的种籽,直到具有完全的能育性为止。
  从很难杂交的和杂交后很少产生任何后代的二个物种产生出来的杂种,一般是很不育的;但是第一次杂交的困难和这样产生出来的杂种的不育性之间的平行现象(parallelism)——这二类事实一般常被混淆在一起——决不严格。在许多情形里,如毛蕊花属,二个纯粹物种能够异常容易地杂交,并产生无数的杂种后代,然而这些杂种是显著不育的。另一方面,有一些物种很少能够杂交或者极难杂交,但是最后产生出来的杂种却很能育。甚至在同一个属的范围内,例如在石竹属(Dlanthus)里,也有这二种相反的情形存在。
  第一次杂交的能育性和杂种的能育性比起纯粹物种的能育性,更易受不良条件的影响。不过第一次杂交的能育性也内在地易于变异,因为同样的二个物种在同样地环境条件下进行杂交,它们的能育性的程度并不永远一样;这还要部分地决定于偶然选作试验之用的个体的体质。杂种也是如此,因为在从同一个蒴里的种籽培育出来的、并处于同样条件下的若干个体,其能育性程度常有很大差异。
  分类系统上的亲缘关系(systematic affinity)这一名词的意义,是指物种之间在构造上和体质上的一般相似性而言。那么第一次杂交的能育性以及由此产生出来的杂种的能育性,大部是受它们的分类系统的亲缘关系所支配的。被分类学家列为不同科的物种之间从没有产生过杂种;另一方面,密切近似的物种一般容易杂交,这就明白地阐明了上述一点。但是分类系统上的亲缘关系和杂交难易之间的相应性决不严格。无数的例子可以阐明,极其密切近似的物种并不能杂交,或者极难杂交;另一方面,很不同的物种却能极其容易地杂交。在同一个科里,也许有一个属,如石竹属,在这个属里有许多物种能够极其容易的杂交;而另一个属,如麦瓶草(Silene),在这个属里,曾经万分努力地使二个极其接近的物种进行杂交,却不能产生一个杂种,甚至在同一个属的范围内,我们也会遇到同样的不同情形;例如,烟草属(Nicotiana)的许多物种几乎比起任何<敏感詞>属的物种更容易杂交,但是该特纳发见并非特殊不同的一个物种——智利尖叶烟草(N.acumlnata)曾和不下八个烟草属的<敏感詞>物种进行过杂交,它顽固地不能受精,也不能使<敏感詞>物种受精。类似的事实还可以举出很多。
  没有一个人能够指出,就任何可以辨识的性状而言,究竟是什么种类的或什么数量的差异足以阻止二个物种的杂交。可以阐明,习性和一般外形极其明显不同的,而且花的每一部分,甚至花粉、果实,以及子叶有着强烈显著差异的植物,也能够杂交。一年生植物和多年生植物,落叶树和常绿树,生长在不同地点的而且适应极其不同气候的植物,也常常容易杂交。
  我们所谓二个物种的互交(reciprocal cross),是指这样的一种情形:例如,先以母驴和公马杂交,然后再以母马和公驴杂交;如此,可以说这二个物种是互交了。在进行互交的难易上,常有极广泛可能的差异。这等情形是高度重要的,因为它们证明了任何二个物种的杂交能力,常和它们的分类系统的亲缘关系完全无关,即是完全和它们在生殖系统以外的构造和体质的差异无关。科尔路特很早以前就观察到了相同的二个物种之间的互交结果的多样性。兹举一例,紫茉莉(Mirabilis jalapa)能够容易地由长筒紫茉莉(M.1ongiflora)的花粉来受精,而且它们的杂种是充分能育的;但是科尔路特曾经试图以紫荣莉的花粉使长筒紫茉莉受精,接连在八年之中进行了二百次以上,结果是完全失败了。还有若干同等显著的例子可以举出来,特莱(Thuret)在某些海藻即墨角藻属(Fuci)里观察过同样的事实。还有,该特纳发见互交的难易不同,是极其普通的事情。他曾在被植物学家们仅仅列为变种的一些亲缘接近的类型(如一年生紫罗兰[Matthiola awnua〕和无毛紫罗兰(Miatthila glabra])之间,观察到这种情形。还有一个值得注意的事实,即从互交中产生出来的杂种,当然它们是从完全相同的二个物种混合而来的,不过一个物种先用作父本然后用作母本,它们在外部性状上虽差异极小,但是一般在能育性上却微有不同,有时还表现了高度的差异。
  从该特纳的著述里,还可举出一些<敏感詞>的奇妙规律:例如,某些物种特别能和<敏感詞>物种杂交;同属的<敏感詞>物种特别能使它们的杂种后代类似自己;但是这二种能力并不一定伴随在一起。有一些杂种,不像通常那样地具有双亲之间的中间性状,却常常与双亲的某一方密切相似;这等杂种,虽然在外观上很像纯粹亲种的一方,但除了极少的例外,都是极端不育的。还有,在通常具有双亲之间的中间构造的一些杂种里,有时会出现例外的和异常的个体,它们与纯粹亲种的一方密切相似:这些杂种几乎常常是极端不育的,纵使从同一个蒴里的种籽培育出来的<敏感詞>杂种是相当能育的时候,也是如此。这些事实阐明了,一个杂种的能育性和它在外观上与任何一个纯粹亲种的相似性,可以何等全然无关。
  考察了刚才所举出的支配第一次杂交的和杂种的能育性的凡项规律,我们便可看出,当必须看作是真正不同物种的那些类型进行杂交时,它们的能育性,是从完全不育逐渐到完全能育,或者甚至在某些条件下可以过分地能育;它们的能育性,除了显著容易受良好条件和不良条件的影响外,是内在地易于变异的;第一次杂交的能育性以及由此产生出来的杂种的能育性在程度上决不是永远一样的;杂种的能育性和它与任何一个亲种在外观上的相似性,是无关的;最后,二个物种之间的第一次杂交的难易,并不永远受它们的分类系统的亲缘关系,即彼此相似的程度所支配。最后这一点,已在同样的二个物种之间的互交结果中表现出来的差异所明确证实了,因为,某一个物种或另一个物种被用作父本或母本时,它们杂交的难易,一般地有某些差异,并且有时有极其广泛可能的差异。还有,从互交中产生出来的杂种常常在能育性上有差异。
  那么,这些复杂的和奇妙的规律,是否表明仅仅为着阻止物种在自然状况中的混淆,它们才被赋予了不育性呢?我想并不是这样的。因为,我们必须假定避免混淆对于各个不同的物种都是同等重要的,而为什么当各个不同的物种进行杂交时,它们的不育性的程度会有如此极端的差异呢?为什么同一物种的一些个体中的不育性程度会内在地易于变异呢?为什么某些物种易于杂交,却产生很不育的杂种;而<敏感詞>物种极难杂交,却产生很能育的杂种呢?为什么在同样的二个物种的互交结果中常常会有如此巨大的差异呢?甚至可以问,为什么会允许杂种的产生呢?既然赋予物种以产生杂种的特别能力,然后又以不同程度的不育性,来阻止它们进一步的繁殖,而这种不育程度又和第一次结合的难易并无严格关联。这似乎是一种奇怪的安排。
  相反地,上述一些规律和事实,在我看来,清楚地表明了第一次杂交的和杂种的不育性,仅仅是伴随于或者是决定于它们的生殖系统中的未知的差异;这些差异具有如此特殊的和严格的性质,以致在同样的二个物种的互交中,一个物种的雄性生殖质虽然常常能自由地作用于另一物种的雌性生殖质,但不能翻转过来起作用。最好用一个例子来充分地解释我所谓的不育性是伴随<敏感詞>差异而发生的,并不是特别被赋予的一种性质。例如,一种植物嫁接或芽接在<敏感詞>植物之上的能力,对于它们在自然状态下的利益来说,并不重要,所以我设想没有一个人会假定这种能力是被特别赋予的一种性质,但是他们会承认这是伴随那二种植物的生长法则上的差异而发生的。我们有时可以从树木生长速度的差异、木质硬度的差异、以及树液流动期间和树液性质的差异等等看出,为什么某一种树不能嫁接在另一种树上的理由;但是在很多情形下,我们却完全看不出任何理由来。无论二种植物在大小上的巨大差异,无论一是木本的、一是草本的,无论一是常绿的,一是落叶的,也无论它们对于广泛不同的气候的适应性,都不会常常阻止它们能够嫁接在一一起。杂交的能力是受分类系统的亲缘关系所限制的,嫁接也是如此,因为还没有人能够把属于十分不同科的树嫁接在一起;但是相反地,密切近似的物种以及同一物种的变种,虽不一定能够、但通常能够容易地嫁接在一起,但是这种能力,和在杂交中一样,绝对不受分类系统的亲缘关系所支配。虽然同一科里的许多不同的属可以嫁接在一起,但是在另外一些情形里,同一属的一些物种却不能彼此嫁接。梨和温荸(quince)被列为不同的属,梨和苹果被列为同属①,但是把梨嫁接在温棒上远比把梨嫁接在苹果上来得容易。甚至不同的梨变种在温柠上的嫁接,其难易程度也有所不同;不同杏变种和桃变种在某些李变种上的嫁接,也是如此。
  正如该特纳发见同样的二个物种的不同个体往往在杂交中会有内在的差异,萨哥瑞特(Sageret)相信同样的二个物种的不同个体在嫁接中也是如此。正如在互交中,结合的难易常常是很不相同的,在嫁接中也往往如此;例如,普通醋栗不能嫁接在穗状醋栗(currant)上,然而穗状醋栗却能嫁接在普通醋栗上,虽然这是困难的。
  我们已经知道,具有不完全生殖器官的杂种的不育性和具有完全生殖器官的二个纯粹物种的难于结合,是两回事,然而这二类不同的情形在很大程度上是平行的。在嫁接方面也有类似的情形发生;因为杜因(Thouin)发见刺槐属(Robinia)的三个物种在本根上可以自由结籽。另一方面,花楸属(Sorbus)的某些物种当被嫁接在<敏感詞>物种上面时,所结的果实,则比在本根上多一倍。这一事实可以使我们想起朱顶红属、西番莲属等等的特别情形,它们由不同物种的花粉来受精比由本株的花粉来受精,能够产生更多的种籽。
  因此,我们看出,虽然嫁接植物的单纯愈合和雌雄性生殖质在生殖中的结合之间有着明确的和巨大的区别,但是不同物种的嫁接和杂交的结果,还存在着大致的平行现象。正如我们必须把支配树木嫁接难易的奇异而复杂的法则,看作是伴随营养系统中一些未知差异而发生的一样,我相信支配第一次杂交难易的更为复杂的法则,是伴随生殖系统中一些未知差异而发生。这两方面的差异,如我们预料到的,在某种范围内是遵循着分类系统的亲缘关系的,所谓分类系统的亲缘关系,是试图用以说明生物之间的各种相似和相异的情况。这些事实似乎决没有指明各个不同物种在嫁接或杂交上困难的大小,是一种特别的禀赋;虽然在杂交的场合,这种困难对于物种类型的存续和稳定是重要的,而在嫁接的场合,这种困难对于植物的利益并不重要。

  第一次杂交不育性和杂种不育性的起源和原因

  有一个时期,我和别人一样,以为第一次杂交的不育性和杂种的不育性,大概是通过自然选择把能育性的程度逐渐减弱而慢漫获得的,并且以为稍为减弱的能育性,像任何<敏感詞>变异似地,是当一个变种的某些个体和另一变种的某些个体杂交时,自发地出现的。当人类同时进行选择二个变种时,把它们隔离开是必要的,根据这同样的原则,如果能够使二个变种或初期的物种避免混淆,对于它们显然是有利的。第一,可以指出,栖息在不同地带的物种当杂交时往往是不育的;那么,使这样隔离的物种相互不育,对于它们显然没有什么利益可言,因此这就不能通过自然选择而发生;但是或者可以这样地争论,如果一个物种和同地的某一物种杂交而变成不育的,那么它和<敏感詞>物种杂交而不育,大概也是必然的事情了。第二,在互交中,第一个类型的雄性生殖质可以完全不能使第二个类型受精,同时第二个类型的雄性生殖质却能使第一个类型自由地受精,这种现象几乎和违反特创论一样,也是违反自然选择学说的;因为生殖系统的这种奇异状态对于任何一个物种都不会有什么利益。
  当考察自然选择对于物种互相不育是否有作用时,最大的难点在于从稍微减弱的不育性到绝对的不育性之间还有许多级进的阶段存在,一个初期的物种当和它的亲种或某一<敏感詞>变种进行杂交时,如果呈现某种轻微程度的不育性,可以认为对于这个初期的物种是有利益的;因为这样可以少产生一些劣等的和退化的后代,以免它们的血统与正在形成过程中的新种相混合。但是,谁要不怕麻烦来考察这些级进的阶段,即从最初程度的不育性通过自然选择而得到增进,达到很多物种所共同具有的、以及已经分化为不同属和不同科的物种所普遍具有的高度不育性,他将会发见这个问题是异常复杂的。经过深思熟虑之后,我认为这种结果似乎不是通过自然选择而来的。兹以任何二个物种在杂交时产生少数而不育的后代为例;那么,偶然被赋予稍微高一些程度的相互不育性,并且由此跨进一小步而走向完全不育性,这对于那些个体的生存会有什么利益呢?然而,如果自然选择的学说可以应用于此,那么这种性质的增进必定会在许多物种里继续发生,因为大多数的物种是全然相互不育的。关于不育的中性昆虫,我们有理由相信,它们的构造和不育性的变异是曾被自然选择缓慢地积累起来的,因为这样,可以间接地使它们所属的这一群较同一物种的另一群更占优势:但是不营群体生活的动物,如果一个个体与<敏感詞>某一变种杂交,而被给予了稍微的不育性,是不会得到任何利益的,或者也不会间接地给予同一变种的<敏感詞>一些个体什么利益,而导致这些个体保存下来。
  但是,详细地来讨论这个问题,将是多余的;因为,关于植物,我们已经有确实的证据,表明杂交物种的不育性一定是由于和自然选择完全无关的某项原理。该特纳和科尔路特曾证明,在包含有极多物种的属里,从杂交时产生愈来愈少的种籽的物种起,到决不产生一粒种籽但受某些<敏感詞>物种的花粉影响(由胚珠的胀大可以判明)的物种止,可以形成一条系列,选择那些已经停止产生种籽的更不能生育的个体,显然是不可能的;所以仅仅是胚珠受到影响时,并不能通过选择而获得极度的不育性;而且由于支配各级不育性的法则在动物界和植物界里是这样地一致,所以我们可以推论,这原因,无论它是什么,在所有情形下,都是相同的,或者近于相同的。
  引起第一次杂交的和杂种的不育性的物种之间是有差异的,现在我们对这种差异的大概性质,进行比较深入的考察。在第一次杂交的情形下,对于它们的结合和获得后代的困难的程度,显然决定于几种不同的原因。有时雄性生殖质由于生理的关系,不可能到达胚珠,例如雌蕊过长以致花粉管不能到达子房的植物,就是如此。我们也曾观察过,当把一个物种的花粉放在另一个远缘物种的柱头上时,虽然花粉管伸出来了,但它们并不能穿入柱头的表面。再者,雄性生殖质虽然可以到达雌性生殖质,但不能引起胚胎的形成,特莱对于墨角藻所作的一些试验,似乎就是如此。对于这些事实还无法解释,正如对于某些树为什么不能嫁接在<敏感詞>树上,不会有什么解释是一样的,最后,也许胚胎可以发育,但早斯即行死去。最后这一点还没有得到充分的注意;但是在山鸡和家鸡的杂交工作上具有丰富经验的休伊特先生(Mr·Hewitt)曾以书面告诉过我他所做过的观察,这使我相信胚胎的早期死亡是第一次杂交不育性的最常见的原因。索尔特先生(Mr·Salter)曾检查过由鸡属(Gallus)的三个物种和它们杂种之间的各种杂交中所产生出来的500个蛋,他最近发表了这一检查的结果;大多数的蛋都受精了;并且在大多数的受精蛋中,胚胎或者部分地发育,但不久就死去了,或者近于成熟,但雏鸡不能啄破蛋壳,在孵出的雏鸡中,有五分之四在最初几天内、或者最长在几个星期内就死去了,“看不出任何明显的原因,显然这是由于仅仅缺乏生活的能力而已”;所以从500个蛋中只养活了十二只小鸡。关于植物,杂种的胚体大概也以同样的方式常常死去;至少我们知道从很不相同的物种培育出来的杂种,常常是衰弱的、低矮的而且会在早期死去;关于这类事实,马克思·维丘拉(Max Wichura)最近发表了一些关于杂种柳(willow)的显著事例。这里值得注意的是,在单性生殖(parthenogenesis)的一些情形里,未曾受精的蚕蛾卵的胚胎,经过早期的发育阶段后,就像从不同物种杂交中产生出来的胚胎一样地死去了。在没有弄清楚这些事实之前,我过去不愿相信杂种的胚胎会常常在早期死去的;因为杂种一旦产生,如我们所看到的骡的情形,一般是健康而长命的。然而杂种在它产生前后,是处于不同的环境条件之下的:如果杂种产生在和生活在双亲所生活的地方,它们一般是处于适宜的生活条件之下的。但是,一个杂种只承继了母体的本性和体质的一半;所以在它产生之前,还在母体的子官内或在由母体所产生的蛋或种籽内被养育的时候,可能它已处于某种程度的不适宜条件之下了,困此它就容易在早期死去;特别是因为一切极其幼小的生物对于有害的或者不自然的生活条件是显著敏感的。但是,总的看来,其原因更可能在于原始授精作用中的某种缺点,致使胚胎不能完全地发育,这比它此后所处的环境更为重要。
  关于两性生殖质发育不完全的杂种的不育性,情形似乎颇不相同。我已经不止一次地提出过大量的事实,示明动物和植物如果离开它们的自然条件,它们的生殖系统就会极其容易地受到严重的影响。事实上这是动物家养化的重大障碍。如此诱发的不育性和杂种的不育性之间,有许多相似之点。在这二种情形里,不育性和~般的健康无关,而且不育的个体往往身体肥大或异常茂盛。在这二种情形里,不育性以各种不同的程度出现;而且雄性生殖质最容易受到影响;但是有时雌性生殖质比雄性生殖质更容易受到影响。在这二种情形里,不育的倾向在某种范围内和分类系统的亲缘关系是一致的,因为动物和植物的全群都是由于同样的不自然条件而招致不孕的;并且全群的物种都有产生不育杂种的倾向。另一方面,一群中的一个物种时常会抵抗环境条件的巨大变化,而在能育性上无所损伤;而一群中的某些物种会产生异常能育的杂种,如未经试验,没有人能说,任何特别的动物是否能够在栏养中生育,或者任何外来植物是否能够在栽培下自由地结籽;同时他未经试验也不能说,一属中的任何二个物种究竟能否产生或多或少是不育的杂种。最后,如果植物在几个世代内都处在不是它们的自然条件下,它们就极易变异,变异的原因似乎是部分地由于生殖系统受到特别的影响,虽然这种影响比引起不育性发生时的那种影响为小。杂种也是如此,因为正如每一个试验者所曾观察到的,杂种的后代在连续的世代中也是显著易于变异的。
  因此,我们可以看出,当生物处于新的和不自然的条件之下时,以及当杂种从二个物种的不自然杂交中产生出来时,生殖系统都在一种很相似的方式下蒙受影响,而与一般健康状态无关。在前一种情形下,它的生活条件受到了扰乱,虽然这常常是我们所不能觉察到的那种很轻微的程度;在后一种情形下,也就是在杂种的情形下,外界条件虽然保持一样,但是由于二种不同的构造和体质,当然包括生殖系统在内,混合在一起,它的体制便受到扰乱。因为,当二种体制混合成为一种体制的时候,在它的发育上,周期性的活动上,不同部分和器官的彼此相互关联上,以及不同部分和器官对于生活条件的相互关系上,没有某种扰乱发生,几乎是不可能的。如果杂种能够互相杂交而生育,它们就会把同样的混成体制一代一代地传递给它们的后代,因此,它们的不育性虽有某种程度的变异,但不致消灭;这是不足为奇的。它们的不育性甚至还有增高的倾向,如上所述,这一般是由于过分接近的近亲交配的结果。维丘拉曾大力主张上述观点,即杂种的不育性是二种体质混合在一起的结果。
  必须承认,根据上述的或任何<敏感詞>的观点,我们并不能理解有关杂种不育性的若干事实;例如,从互交中产生的杂种,其能育性并不相等;或如,偶然地、例外地与任何一个纯粹亲种密切类似的杂种的不育性有所增强。我不敢说上述的论点已经接触到事物的根源;为什么一种生物被放置在不自然的条件下就会变为不育的,对此还不能提供任何解释。我曾经试图阐明的仅仅是,在某些方面有相似之处的二种情形,同样可以引起不育的结果,——在前一种情形里是由于生活条件受到了扰乱,在后一种情形里是由于它们的体制因为二种体制混合在一起而受到了扰乱。
回复

使用道具 举报

23
 楼主| 发表于 2008-1-20 13:52:52 | 只看该作者
同样的平行现象也适用于类似的、但很不相同的一些事实。生活条件的微小变化对于所有生物都是有利的,这是一个古老的而且近于普遍的信念,这种信念是建筑在我曾在他处举出的大量证据上的。我看到农民和艺园者就这样做,他们常常从不同土壤和不同气候的地方交换种籽、块根等等,然后再换口来。在动物病后复元的期间,几乎任何生活习性上的变化,对于它们都是有很大利益为。还有,关于无论植物或动物,已经极明确地证实了,同一物种的、但多少有所不同的个体之间的杂交,会增强它们的后代的生活力和能育性;而且最近亲属之间的近亲交配,若连续经过几代而生活条件保持不变,几乎永远要招致身体的缩小、衰弱或不育。
  因此,一方面,生活条件的微小变化对于所有生物都有利;另一方面,轻微程度的杂交,即处于稍微不同的生活条件之下的、或者已有微小变异的同一物种的雌雄之间的杂交,会增强后代的生活力和能育性。但是,如我们曾经看到的,在自然状态下长久习惯于某些同一条件的生物,当处于相当变化的条件之下时,如在栏养中,屡屡会变为多少不育的;并且我们知道,二个类型如果相差极远,或为不同的物种,它们之间的杂交几乎常常会产生某种程度不育的杂种。我充分确信,这种双重的平行现象决不是偶然或错觉。一个人如果能够解释为什么大象和<敏感詞>很多动物在它们的乡土上仅仅处于部分的栏养下就不能生育,他就能解释杂种一般不能生育的主要原因了。同时他还能解释为什么常常处于新的和不一致的条件下的某些家养动物族在杂交时完全能够生育,虽然它们是从不同的物种传下来的,而这些物种在最初杂交时大概是不育的。上述二组平行的事实似乎被某一个共同的、不明的纽带连结在一起了,这一纽带在本质上是和生命的原则相关连的;按照赫伯特·斯潘塞先生所说的,这一原则是,生命决定于或者存在于各种不同力量的不断作用和不断反作用的,这些力量在自然界中永远是倾向于平衡的;当这种倾向被任何变化稍微加以扰乱时,生命的力量就会增强起来。

  交互的二型性和三型性

  关于这个问题,在这里将进行简略的讨论,我们将发见这对于杂种性质问题会提供若干说明。属于不同“目”的若干植物表现了二个类型,这二个类型的存在数目大约相等,并且除了它们的生殖器官以外,没有任何差异;一个类型的雌蕊长、雄蕊短,另一个类型的雌蕊短、雄蕊长;这二个类型具有大小不同的花粉粒。三型性的植物有三个类型,同样地在雌蕊和雄蕊的长短上,花粉粒的大小和颜色上,以及在<敏感詞>某些方面,有所不同;并且三个类型的每一个都有二组雄蕊,所以三个类型共有六组雄蕊和三类雌蕊。这些器官彼此在长度上如此相称,以致其中二个类型的一半雄蕊与第三个类型的柱头具有同等的高度。我曾阐明,为了使这些植物获得充分的能育性,用一个类型的高度相当的雄蕊的花粉来使另一类型的柱头受精,是必要的,并且这种结果已被<敏感詞>观察者证实了。所以,在二型性的物种里,有二个结合,可以称为合法的,是充分能育的;有二个结合,可以称为不合法的,是多少不育的。在三型性的物种里,有六个结合是合法的,即充分能育的,——有十二个结合是不合法的,即多少不育的。
  当各种不同的二型性植物和三型性植物被不合法地授精时,这就是说,用与雌蕊高度不相等的雄蕊的花粉来授精时,我们可以观察到它们的不育性,正如在不同物种的杂交中所发生的情形一样,表现了很大程度的差异,一直到绝对地、完全地不育。不同物种杂交的不育性程度显著地决定于生活条件的适宜与否,我发见不合法的结合也是如此。众所熟知,如果把一个不同物种的花粉放在一朵花的柱头上,随后把它自己的花粉,甚至在一个相当长的期间之后,也放在同一个柱头上,它的作用是如此强烈地占着优势,以致一般地可以消灭外来花粉的效果;同一物种的若干类型的花粉也是如此,当合法的花粉和不合法的花粉被放在同一柱头上时,前者比后者占有强烈的优势。我根据若干花的受精情形肯定了这一点,首先我在若干花上进行了不合法的授精,二十四小时后,我用一个具有特殊颜色的变种的花粉,进行合法的授精,于是所有的幼苗都带有同样的颜色;这表明了,合法的花粉,虽然在二十四小时后施用,还能破坏或阻止先行施用的不合法的花粉的作用。还有,同样的二个物种之间的互交,往往会有很不同的结果。三型性的植物也是如此;例如:紫色千屈菜(Lythrum Salicaria)的中花柱类型能极其容易地由短花柱类型的长雄蕊的花粉来不合法地受精,而且能产生许多种籽;但是用中花柱类型的长雄蕊的花粉来使短花柱类型受精时,却不能产生一粒种籽。
  在所有这些情形里,以及在还能补充的<敏感詞>情形里,同一个无疑的物种的一些类型,如果进行不合法结合,其情况恰与二个不同物种在杂交时完全一样。这引导我对于从几个不合法的结合培育出来的许多幼苗仔细观察了四年之久。主要的结果是,这些可以称为不合法的植物都不是充分能育的。从二型性的植物能够培育出长花柱和短花柱的不合法植物,从三型性的植物能够培育出三个不合法类型。这些植物能够在合法的方式下正当地结合起来。当这样做了之后,为什么这些植物所产生的种籽不能像它们双亲在合法受精时所产生的那么多,是没有明显的理由的。但实际并不如此。这些植物都是不育的,不过程度有所不同而已。有些是极端地和无法矫正地不育的,以至在四年中未曾产生过一粒种籽或者甚至一个种籽葫。这些不合法植物在合法方式下结合时的不育性,可以与杂种在互相杂交时的不育性进行严格的比较。另一方面,如果一个杂种和纯粹亲种的任何一方进行杂交,其不育性通常会大大减弱:当一个不合法植株由一个合法植株来授精时,其情形也是如此。正如杂种的不育性和二个亲种之间第一次杂交时的困难情况并非永远相平行一样,某些不合法植物具有极大的不育性,但是产生它们的那一结合的不育性决不是大的。从同一种籽蒴中培育出来的杂种的不育性程度,有内在的变异,而不合法的植物更加如此。最后,许多杂种开花多而长久,但是<敏感詞>不育性较大的杂种开花少,而且它们是衰弱的,可怜地矮小;各种二型性和三型性植物的不合法后代,也有完全一样的情形。
  总之,不合法植物和杂种在性状和习性上有着最密切的同一性。就是说不合法植物就是杂种,不过这样的杂种乃是在同一物种范围内由某些类型的不适当结合产生出来的,而普通的杂种却是从所谓不同物种之间的不适当结合产生出来的,这样说几乎一点也不夸张。我们还看到,第一次不合法的结合和不同物种的第一次杂交,在各方面都有极密切的相似性。用一个例证来说明,或者会更清楚一些;我们假设有一位植物学者发见了三型性紫色千屈菜的长花柱类型有二个显著的变种(实际上是有的),并且他决定用杂交来试验它们是否是不同的物种。他大概会发见,它们所产生的种籽数目仅及正常的五分之一,而且它们在上述<敏感詞>各方面所表现的,好像是二个不同的物种。但是,为了肯定这种情形,他从他的假设的杂种种籽来培育植物,于是他发见,幼苗是可怜地矮小和极端地不育,而且它们在<敏感詞>各方面所表现的,和普通杂种一样。于是,他会宣称,他已经按照一般的观点,确实证明了他的二个变种是真实的和不同的物种,和世界上任何物种一样;但是他完全错误了。
  上述有关二型性和三型性植物的一些事实是重要的,第一,因为它阐明了,对第一次杂交能育性和杂种能育性减弱所进行的生理测验,不是区别物种的安全标准:第二,因为我们可以断定,有某一未知的纽带连结着不合法结合的不育性和它们的不合法后代的不育性,并且引导我们把这同样的观点引伸到第一次杂交和杂种上去;第三,因为我们看出,同一个物种可能存在着二个或三个类型,它们在与外界条件有关的构造或体质上并没有任何不同之处,但它们在某些方式下结合起来时,就是不育的,这一点依我看来,似乎特别重要。因为我们必须记住,产生不育性的,恰恰是同一类型的二个个体的雌雄生殖质的结合,例如二个长花柱类型的雌雄生殖质的结合;另一方面,产生能育性的,恰恰是二个不同类型所固有的雌雄生殖质的结合。因此,最初看来,这种情形和同一物种的个体的普通结合以及不同物种的杂交情形正相反。然而是否真的如此,是可怀疑的;但是我不拟在此详细讨论这一暧昧的问题。
  无论如何,大概我们可以从二型性和三型性植物的考察中,来推论不同物种杂交的不育性及其杂种后代的不育性完全决定于雌雄性生殖质的性质,而与构造上或一般体质上的任何差异无关。根据对于互交的考察,我们也可以得出同样的结论;在互交中,一个物种的雄体不能够或者极其困难地能够和第二个物种的雌体相结合,然而反转过来进行杂交却是完全容易的。那位优秀的观察者该特纳也同样地断定了物种杂交的不育性仅仅是由于它们的生殖系统的差异。

  变种杂交的能育性及其混种后代的能育性不是普遍的

  作为一个极有根据的论点,可以主张,物种和变种之间一定存在着某种本质上的区别,因为变种彼此在外观上无论有多大差异,还是可以十分容易地杂交,且能够产生完全能育的后代。除去某些即将谈到的例外,我充分承认这是规律。但围绕这个问题还有许多难点,因为,当探求在自然状况下所产生的变种时,如果有两个类型,向来被认为是变种,但在杂交中发见它们有任何程度的不育性,大多数博物学者就会立刻把它们列为物种。例如,被大多数植物学者认为是变种的蓝蘩篓和红蘩篓,据该特纳说在杂交中是十分不育的,因此他便把它们列为无疑的物种了。如果我们用这样的循环法辩论下去,就必然要承认在自然状况下产生出来的一切变种都是能育的了。
  如果转过来看一看在家养状况下产生的或者假定产生的一些变种,我们还要被卷人若干疑惑之中。因为,例如当我们说某些南美洲的土著家养狗不能和欧洲狗容易地结合时,在每一个人心目中都会产生一种解释,而且这大概是一种正确的解释,即这些狗本来是从不同物种传下来的。但是,在外观上有着广泛差异的很多家养旅,例如鸽子或甘蓝都有完全的能育性,是一件值得注意的事实,特别是当我们想起有何等众多的物种,虽然彼此极其密切近似,但杂交时却极端不育;这是更可注意的事实。然而,通过以下几点考虑,可知家养变种的能育性并不那么出人意外。第一,可以观察到,二个物种之间的外在差异量并不是它们的相互不育性程度的确实指标,所以在变种的情形下,外在的差异也不是确实的指标,关于物种,其原因肯定是完全在于它们的生殖系统,对家养动物和栽培植物发生作用的变化着的生活条件,极少有改变它们的生殖系统而招致互相不育的倾向,所以我们有良好的根据来承认帕拉斯的直接相反的学说,即家养的条件一般可以消除不育的倾向;因此,物种在自然状态下当杂交时大概有某种程度的不育性,但它们的家养后代当杂交时就会变成为完全能育的。在植物里,栽培并没有在不同物种之间造成不育性的倾向,在已经谈到的若干确实有据的例子里,某些植物却受到了相反的影响,因为它们变成了自交不育的,同时仍旧保有使<敏感詞>物种受精和由<敏感詞>物种受情的能力。如果帕拉斯的关于不育性通过长久继续的家养而消除的学说可以被接受(这几乎是难以反驳的),则长久继续的同一生活条件同样地会诱发不育性就是高度不可能的了;纵使在某些情形里,具有特别体质的物种,偶尔会因此发生不育性。这样,我们就可以理解,如我所相信的,为什么家养动物不会产生互相不育的变种,为什么植物,除去即将举出的少数的情形以外,不产生不育的变种。
  在我看来,目前所讨论的问题中的真正难点,并不是家养品种为什么当杂交时没有变成为互相不育的,而是为什么自然的变种经历了恒久的变化而取得物种的等级时,就如此一般地发生了不育性。我们还远远不能精确地知道它的原因;当看到我们对于生殖系统的正常作用和异常作用是何等极度无知时,这也就不足为奇了,但是,我们能够知道,由于物种与它们的无数竞争者进行了生存竞争,它们便长期地比家养变种暴露在更为一致的生活条件下;因而便不免产生很不相同的结果。因为我们知道,如果把野生的动物和植物从自然条件下取来,加以家养或栽培,它们就会成为不育的,这是很普通的事;并且一向生活在自然条件下的生物的生殖机能,对于不自然杂交的影响大概同样是显著敏感的。另一方面,家养生物,仅仅从它们受家养的事实看来,对于它们的生活条件的变化本来就不是高度敏感的,并且今日一般地能够抗抵生活条件的反复变化而不减低其能育性,所以可以预料到,家养生物所产生的品种,如与同样来源的<敏感詞>变种进行杂交,也很少会在生殖机能上受到这一杂交行为的有害影响。
  我曾说过同一物种的变种进行杂交,好像必然都是能育的。但是,下面我将扼要叙述的少数事例,就是一定程度的不育性的证据。这一证据,和我们相信无数物种的不育性的证据,至少是有同等价值的。这一证据也是从反对说坚持者那里得来的,他们在所有情形下都把能育性和不育性作为区别物种的安全标准。该特纳在他的花园内培育了一个矮型黄籽的玉米品种,同时在它的近旁培育了一个高型红籽的品种,这一工作进行了数年之久;这二个品种虽然是雌雄异花的,但决没有自然杂交。于是他用一类玉米的花粉在另一类的十三个花穗上进行授精,但是仅有一个花穗结了一些籽。也不过只结了五粒种籽,因为这些植物是雌雄异花的,所以人工授精的操作在这里不会发生有害的作用,我相信没有人会怀疑这些玉米变种是属于不同物种的;重要的是要注意这样育成的杂种植物本身是完全能育的;所以,甚至该特纳也不敢承认这二个变种是不同的物种了。
  吉鲁.得·别沙连格(Girou de Buzareingues)杂交了三个葫芦变种,它们和玉米一样是雌雄异花的,他断言它们之间的差异愈大,相互受精就愈不容易。这些试验有多大的可靠性,我不知道;但是萨哥瑞特把这些被试验的类型列为变种,他的分类法的主要根据是不育性的试验,并且诺丹也做出了同样的结论。
  下面的情形就更值得注意了,最初一看这似乎是难以相信的,但这是如此优秀的观察者和反对说坚持者该特纳在许多年内,对于毛蕊花属的九个物种所进行的无数试验的结果,即是,黄色变种和白色变种的杂交,比同一物种的同色变种的杂交,产生较少的种籽。进而他断言,当一个物种的黄色变种和白色变种与另一物种的黄色变种和白色变种杂交时,同色变种之间的杂交比异色变种之间的杂交,能产生较多的种籽。斯科特先生也曾对毛蕊花属的物种和变种进行过试验:他虽然未能证实该特纳的关于不同物种杂交的结果,但他发见了同一物种的异色变种比同色变种所产生的种籽较少,其比例为86:100。然而这些变种除了花的颜色以外,并没有任何不同之处,有时这一个变种还可从另一个变种的种籽培育出来。
  科尔路特工作的准确性已被其后的每一位观察者所证实了,他曾证明一项值得注意的事实,即普通烟草的一个特别变种,如与一个大小相同的物种进行杂交,比<敏感詞>变种更能生育。他对普通被称作变种的五个类型进行了试验,而且是极严格的试验,即互交试验,他发见它们的杂种后代都是完全能育的。但是这五个变种中的一个,无论用作父本或母本与粘性烟草(Nicotiana glutinosa)进行杂交,它们所产生的杂种,永远不像<敏感詞>四个变种与粘性烟草杂交时所产生的杂种那样地不育。因此,这个变种的生殖系统必定以某种方式和在某种程度上变异了。
  从这些事实看来,就不能再坚持变种当杂交时必然是十分能育的。根据确定自然状态下的变种不育性的困难,因为一个假定的变种,如果被证明有某种程度的不育性,几乎普遍会被列为物种:——根据人们只注意到家养变种的外在性状,并且根据家畜变种并没有长期地处于一致的生活条件下;——根据这几项考察,我们可以总结出,杂交时的能育与否并不能作为变种和物种之间的基本区别。杂交的物种的一般不育性,不应看作是一种特别获得的或禀赋,而可以稳妥地看作是伴随它们的雌雄性生殖质中一秤未知性质的变化而发生的。

  除了能育性之外,杂种与混种的比较

  杂交物种的后代和杂交变种的后代,除了能育性以外,还可以在<敏感詞>几方面进行比较。曾热烈地希望在物种和变种之间划出一条明确界限的该特纳,在种间杂种后代和变种间混种后代之间只能找出很少的而且依我看来是十分不重要的差异。另一方面,它们在许多重要之点上却是极其密切一致的。
  这里我将极其简略地来讨论这一问题。最重要的区别是,在第一代里混种较杂种易于变异,但是该特纳却认为经过长期培育的物种所产生的杂种在第一代里是常常易于变异的;我本人也曾见过这一事实的显著例子。该特纳进而认为极其密切近似物种之间的杂种,较极其不同物种之间的杂种易于变异;这一点阐明了变异性的差异程度是逐步消失的。众所熟知,当混种和较为能育的杂种被繁殖到几代时,二者后代的变异性都是巨大的;但是,还能举出少数例子,表明杂种或混种长久保持着二致的性状。然而混种在连续世代里的变异性大概较杂种的为大。
  混种的变异性较杂种的变异性为大,似乎完全不足为奇,固为混种的双亲是变种,而且大都是家养变秧(关于自然变种只做过很少的试验),这意味着那里的变异性是新近发生的,并且意味着由杂交行为所产生的变异性常常会继续,而且会增大。杂种在第一代的变异性比起在其后逐续世代的变异性是微小的,这是一个奇妙的事实,而且是值得注意的。因为这和我提出的普通变异性的原因中的一个观点有关联;这个观点是,由于生殖系统对于变化了的生活条件是显著敏感的,所以在这样的情况下,生殖系统就不能运用它的固有机能来产生在所有方面都和双亲类型密切相似的后代。第一代杂种是从生殖系统未曾受到任何影响的物种传下来的(经过长久培育的物种除外),所以它们不易变异;但是杂种本身的生殖系统却已受到了严重的影响,所以它们的后代是高度变异的。
  还是回转来谈谈混种和杂种的比较:该特纳说,混种较杂种更易重现任何一个亲类型的性状;但是,如果这是真实的,也肯定地不过是程度上的差别而已。又,该特纳明确他说道,从长久栽培的植物产生出来的杂种,比从自然状态下的物种产生出来的杂种,更易于返祖;这对不同观察者所得到的非常不同结果,大概可以给予解释:维丘拉曾对杨树的野生种进行过试验,他怀疑杂种是否会重现双亲类型的性状;然而诺丹却相反地以强调的语句坚持认为杂种的返祖,几乎是一种普遍的倾向,他的试验主要是对栽培植物进行的。该特纳进而说道,任何二个物种虽然彼此密切近似,但与第三个物种进行杂交,其杂种彼此差异很大,然而一个物种的二个很不相同的变种,如与另一物种进行杂交,其杂种彼此差异并不大。但是据我所知,这个结论是建筑在一次试验上的;并且似乎和科尔路特所做的几个试验的结果正相反。
  这些就是该特纳所能指出的杂种植物和混种植物之间的不重要的差异。另一方面,杂种和混种,特别是从近缘物种产生出来的那些杂种,按照该特纳的说法,也是依据同一法则的。当二个物种杂交时,其中一个物种有时具有优势的力量以迫使杂种像它自己。我相信关于植物的变种也是如此;并且关于动物,肯定地也是一个变种常常较另一变种具有优势的传递力量。从互交中产生出来的杂种植物,一般是彼此密切相似的;从互交中产生出来的混种植物也是如此。无论杂种或混种,如果在连续世代里反复地和任何一个亲本进行杂交,都会使它们重现任何一个纯粹亲类型的性状。
  这几点意见显然也能应用于动物;但是关于动物,部分地由于次级性征的存在,使得上述问题更加十分复杂:特别是由于在物种间杂交和变种间杂交里某一性较另一性强烈地具有优势的传递力量,这个问题就更加复杂了。例如,我想那些主张驴较马具有优势的传递力量的作者们是对的,所以无论骡(mule)或驴骡(hinny)都更像驴而少像马;但是,公驴较母驴更强烈地具有优势的传递力量,所以由公驴和母马所产生的后代——骡,比由母驴和公马所产生的后代——驴骡,更与驴相像。
  某些作者特别着重下述的假定事实:即只有混种后代不具有中间性状,而密切相似于双亲的一方;但是这种情形在杂种里也曾经发生,不过我承认这比在混种里发生的少得多。看一看我所搜集的事实,由杂交育成的动物,凡与双亲一方密切相似的,其相似之点似乎主要局限于性质上近于畸形的和突然出现的那些性状——如皮肤白变症,黑变症(melanism)、无尾或无角、多指和多趾;而与通过选择慢慢获得的那些性状无关。突然重现双亲任何一方的完全性状的倾向,也是在混种里远比在杂种里更易发生。混种是由变种传下来的,而变种常常是突然产生的,并且在性状上是半畸形的;杂种是由物种传下来的,而物种则是慢慢而自然地产生的。我完全同意普罗斯珀·芦卡斯博士的见解,他搜集了有关动物的大量事实后,得出如下的结论:不论双亲彼此的差异有多少,就是说,在同一变种的个体结合中,在不同变种的个体结合中,或在不同物种的个体结合中,子代类似亲代的法则都是一样的。
  除了能育性和不育性的问题以外,物种杂交的后代和变种杂交的后代,在一切方面似乎都有普遍的和密切的相似性。如果我们把物种看作是特别创造出来的,并且把变种看作是根据次级法则(Secondary laws)产生出来的,这种相似性便会成为一个令人吃惊的事实。但这是和物种与变种之间并没有本质区别的观点完全符合。

  本章提要

  充分不同到足以列为物种的类型之间的第一次杂交以及它们的杂种,很一般地但非普遍地不育,不育性具有各种不同的程度,而且往往相差如此微小,以致最谨慎的试验者根据这一标准也会在类型的排列上得出完全相反的结论。不育性在同一物种的个体里是内在地易于变异的,并且对于适宜的和不适宜的生活条件是显著敏感的。不育性的程度并不严格遵循分类系统的亲缘关系,但被若干奇妙的和复杂的法则所支配。在同样的二个物种的互交里不育性一般是不同的,有时是大为不同的。在第一次杂交以及由此产生出来的杂种里,不育性的程度并非是永远相等的。
  在树的嫁接中,某一物种或变种嫁接在<敏感詞>树上的能力,是伴随着营养系统的差异而发生的,而这些差异的性质一般是未知的;与此同样,在杂交中,一个物种和另一物种在结合上的难易,是伴随着生殖系统里的未知差异而发生的。想像为了防止物种在自然状况下的杂交和混淆,物种便被特别赋予了各种程度的不育性,和想像为了防止树木在森林中的接合,树木便被特别赋予了各种不同而多少近似程度的难以嫁接的性质,同样是毫无任何理由的。
  第一次杂交和它的杂种后代的不育性不是通过自然选择而获得的。在第一次杂交的场合,不育性似乎决定于几种条件:在某些事例里,主要决定于胚胎的早期死亡。在杂种的场合,不育性显然决定于它们的整个体制被二个不同类型的混合所扰乱了;这种不育性和暴露在新的和不自然的生活条件下的纯粹物种所屡屡发生的不育性,是密切近似的。能够解释上述情形的人们,就能够解释杂种的不育性。这一观点有力地被另一种平行现象所支持:即是第一,生活条件的微小变化可以增加一切生物的生活力和能育性;第二,暴露在微有不同的生活条件下的、或已经变异了的类型之间的杂交,将有利于后代的大小、生活力和能育性。关于二型性和三型性植物的不合法的结合的不育性以及它们的不合法后代的不育性所举出的一些事实,大概可以确定以下情形,即有某种未知的纽带在所有情形里连结着第一次杂交的不育性程度和它们的后代的不育性程度。对于二型性这些事实的考察,以及对于互交结果的考察,明白地引出了如下的结论:杂交物种不育的主要原因仅仅在于雌雄生殖质中的差异。但是在不同物种的场合里,为什么在雌雄生殖质极其一般地发生了或多或少的变异后,就会引致它们的相互不育性,我们还不明白;然而这一点和物种长期暴露在近于一致的生活条件下,似有某种密切的关联。
  任何二个物种的难以杂交和它们的杂种后代的不育性,纵然起因不同,在大多数情形下应当是相应的,这并不奇怪;因为二者都决定于杂交的物种之间的差异量。第一次杂交的容易和如此产生的杂种的能育,以及嫁接的能力——虽然嫁接的能力是决定于广泛不同的条件的——在一定范围内部应当与被试验类型的分类系统的亲缘关系相平行,这也不奇怪;因为分类系统的亲缘关系包括着一切种类的相似性。
  被认为是变种的类型之间的第一次杂交,或者充分相似到足以被认为是变种的类型之间的第一次杂交,以及它们的混种后代,一般都是能育的,但不一定如常常说到的那样,必然如此。如果我们记得,我们是何等易于用循环法来辩论自然状态下的变种,如果我们记得,大多数变种是在家养状况下仅仅根据对外在差异的选择而产生出来的,并且它们并不曾长久暴露在一致的生活条件下;则变种之有几乎普遍而完全的能育性,就不值得奇怪了。我们还应当特别记住,长久继续的家养具有消弱不育的倾向,所以这好像很少能诱发不育性。除了能育性的问题之外,在<敏感詞>一切方面杂种和混杂种之间还有最密切而一般的相似性——就是说在它们的变异性方面,在反复杂交中彼此结合的能力方面,以及在遗传双亲类型的性状方面,都是如此。最后,虽然我们还不知道第一次杂交的和杂种的不育性的真实原因,并且也不知道为什么动物和植物离开它们的自然条件后会变成为不育的,但是本章所举出的一些事实,对我来说,似乎与物种原系变种这一信念并不矛盾。
回复

使用道具 举报

24
 楼主| 发表于 2008-1-20 13:55:41 | 只看该作者
第十章 论地质记录的不完全
今日中间变种的不存在——绝灭的中间变种的性质以及它们的数量——从剥蚀的速率和沉积的速率来推算时间的经过——从年代来估计时间的经过——古生物标本的贫乏——地质层的间断——花岗岩地域的剥蚀——在任何一个地质层中中间变种的缺乏——物种群的突然出现——物种群在已知的最下化石层中的突然出现——生物可居住的地球的远古时代。
  我在第六章已经列举了对于本书所持观点的主要异议。对这些异议大多数已经讨论过了。其中之一,即物种类型的区别分明以及物种没有无数的过渡连锁把它们混淆在一起,是一个显而易见的难点。我曾举出理由来说明,为什么这些连锁今日在显然极其有利于它们存在的环境条件下,也就是说在具有渐变的物理条件的广大而连续的地域上,通常并不存在。我曾尽力阐明,每一物种的生活对今日<敏感詞>既存生物类型的依存,甚于对气候的依存,所以具有真正支配力量的生活条件并不像热度或温度那样地于完全不知不觉中逐渐消失。我也曾尽力阐明,由于中间变种的存在数量比它们所联系的类型为少,所以中间变种在进一步的变异和改进的过程中,一般要被淘汰和消灭。然而无数的中间连锁目前在整个自然界中没有到处发生的主要原因当在于自然选择这一过程,因为通过这一过程新变种不断地代替了和排挤了它们的亲类型。因为这种绝灭过程曾经大规模地发生了作用,按比例来说,既往生存的中间变种一定确实是大规模存在的。那么,为什么在各地质层(geological formation)和各地层(strattum)中没有充满这些中间连锁呢?地质学的确没有揭发任何这种微细级进的连锁;这大概是反对自然选择学说的最明显的和最重要的异议,我相信地质纪录的极度不完全可以解释这一点。
  第一,应当永远记住,根据自然选择学说,什么种类的中间类型应该是既往生存过的。当观察任何二个物种时,我发见很难避免不想像到直接介于它们之间的那些类型。但这是一个完全错误的观点;我们应当常常追寻介于各个物种和它们的一个共同的,但是未知的祖先之间的那些类型;而这个祖先一般在某些方面已不同于变异了的后代。兹举一个简单的例证:扇尾鸽和突胸鸽都是从岩鸽传下来的;如果我们掌握了所有曾经生存过的中间变种,我们就会掌握这二个品种和岩鸽之间各有一条极其绵密的系列;但是没有任何变种是直接介于扇尾鸽和突胸鸽之间的;例如,结合这二个品种的特征——稍微扩张的尾部和稍微增大的嚏囊——的变种,是没有的。还有,这二个品种已经变得如此不同,如果我们不知道有关它们起源的任何历史的和间接的证据,而仅仅根据它们和岩鸽在构造上的比较,就不可能去决定它们究竟是从岩鸽传下来的呢,还是从<敏感詞>某一近似类型皇宫鸽(C.oenas)传下来的。
  自然的物种也是如此,如果我们观察到很不相同的类型,如马和貘(tapir),我们就没有任何理由可以假定直接介于它们之间的连锁曾经存在过,但是可以假定马或貘和一个未知的共同祖先之间是有中间连锁存在过的。它们的共同祖先在整个体制上与马和貘具有极其一般的相似;但在某些个别构造上可能和二者有很大的差异;这差异或者甚至比二者之间的彼此差异还要大,因此,在所有这种情形里,除非我们同时掌握了一条近于完全的中间连锁,纵使将祖先的构造和它的变异了的后代加以严密的比较,也不能辨识出任何二个物种或二个物种以上的亲类型。
  根据自然选择学说,二个现存类型中的一个来自另一个大概是可能的;例如马来自貘;并且在这种情形下,应有直接的中间连锁曾经存在于它们之间。但是这种情形意味着一个类型很长期间保持不变,而它的子孙在这期间却发生了大量的变异;然而生物与生物之间的子与亲之间的竞争原理将会使这种情形极少发生;因为,在所有情形里,新而改进的生物类型都有压倒旧而不改进的类型的倾向。
  根据自然选择学说,一切现存物种都曾经和本属的亲种有所联系,它们之间的差异并不比今日我们看到的同一物种的自然变种和家养变种之间的差异为大;这些目前一般已经绝灭了的亲种,同样地和更古老的类型有所联系;如此回溯上去,常常就会融汇到每一个大纲(class)的共同祖先。所以,在所有现存物种和绝灭物种之间的中间的和过渡的连锁数量,必定难以胜数。假如自然选择学说是正确的,那么这些无数的中间连锁必曾在地球上生存过。
  从沉积的速率和剥蚀的范围来推算时间的经过

  除了我们没有发见这样无限数量的中间连锁的化石遗骸之外,另有一种反对意见:认为切变化的成果既然都是缓慢达到的,所以没有充分的时间足以完成如此大量的有机变化。如果读者不是一位实际的地质学者,我几乎不可能使他领会一些事实,从而对时间经过有所了解。莱尔爵士的《地质学原理》(Principlesof Geology)将被后世历史家承认在自然科学中掀起了一次革命,凡是读过这部伟大著作的人,如果不承认过去时代曾是何等地久远,最好还是立刻把我的这本书阖起来不要读它吧。只研究《地质学原理》或阅读不同观察者关于各地质层的专门论文,而且注意到各作者怎样试图对于各地质层的、甚至各地层的时间提出来的不确切的观念,还是不够的。如果我们知道了发生作用的各项动力,并且研究了地面被剥蚀了多深,沉积物被沉积了多少,我们才能最好地对过去的时间获得一些概念。正如莱尔明白说过的,沉积层的广度和厚度就是剥蚀作用的结果,同时也是地壳别的场所被剥蚀的尺度。所以一个人应当亲自考察层层相叠的诸地层的巨大沉积物,仔细观察小河如何带走泥沙以及波浪如何侵蚀去海岸岩崖(Sea-cliff),这样才能对过去时代的时间有一点了解,而有关这时间的标志在我们的周围触目皆是。
  沿着由不很坚硬岩石所形成的海岸走走,并且注意看看它的陵削(degradation)过程是有好处的。在大多数情形里,达到海岸岩崖的海潮每天只有二次,而且时间短暂,同时只有当波浪挟带着细沙或小砾石时才能侵蚀海岸岩崖;因为有良好的证据可以证明,清水对侵蚀岩石是没有任何效果的。这样,海岸岩崖的基部终于被掘空,巨大的岩石碎块倾落下来了,这些岩石碎块便固定在倾落的地方,然后一点一点地被侵蚀去,直到它的体积缩小到能够被波浪把它旋转的时候,才会很快地磨碎成小砾石、砂或泥,但是我们如此常常看到沿着后退的海岸岩崖基部的圆形巨砾(boulders),密被着海产生物,这表明了它们很少被磨损而且很少被转动!还有,如果我们沿着任何正在蒙受陵削作用的海岸岩崖行走几英里路,就会发见目前正在被陵削着的崖岸,不过只是短短的一段,或只是环绕海角(promontory)而星点地存在着。地表和植被的外貌表明,自从它们的基部被水冲涮以来,已经经过许多年代了。
  然而我们近来从许多优秀观察者——朱克斯(Jukes)、盖基(Geikie)、克罗尔(Croll)以及他们的先驱者拉姆齐的观察里,得知大气的陵削作用比海岸作用(coast-action),即波浪的力量,更是一种远为重要的动力。整个的陆地表面都暴露在空气和溶有炭酸的雨水的化学作用之下,同时在寒冷地方,则暴露在霜的作用之下;逐渐分解的物质,甚至在缓度的斜面上,也会被豪雨冲走,特别是在干燥的地方,则会超出想像程度以上地被风刮走;于是这些物质便被河川运去,急流使河道加深,并把碎块磨得更碎。下雨的时候,甚至在缓度倾斜的地方,我们也能从各个斜面流下来的泥水里看到大气陵削作用的效果。拉姆齐和惠特克(Whitaker)曾经阐明,并且这是一个极其动人的观察,维尔顿区(Wealden district)的巨大崖坡(escarpment)线,以及从前曾被看作是古代海岸的横穿英格兰的崖坡线,都不能是这样形成的,因为各崖坡线都是由一种相同的地质层构成的,而浅们的海岸岩崖到处都是由各种不同的地质层交织而成的,假如这种情形是真实的话,我们便不得不承认,这些崖坡的起源,主要是由于构成它的岩石比起周围的表面能够更好地抵抗大气的剥蚀作用;结果,这表面便逐渐陷下,遂留下较硬岩石的突起线路。从表面上看来、大气动力的力量是如此微小,而且工作得似乎如此缓慢,但曾经产生出如此伟大的结果,按照我们的时间观点来讲,没有任何事情比上述这种信念更能使我们强烈地感到时间的久远无边了。
  如果这样体会了陆地是通过大气作用和海岸作用而缓慢被侵蚀了的,那末要了解过去时间的久远,最好一方面去考察许多广大地域上被移去的岩石,他方面去考察沉积层的厚度。记得当我看到火山岛被波浪冲蚀,四面削去成为高达一千或二千英尺的直立悬崖时,曾大受感动;因为,溶岩流(lava-streams)凝成缓度斜面,由于它以前的液体状态,明显阐明了坚硬的岩层曾经一度在大洋里伸展得何等辽远。断层(faults)把这同类故事说得更明白,沿着断层——即那些巨大的裂隙,地层在这一边隆起,或者在那一边陷下,这等断层的高度或深度竟达数千英尺;因为,自从地壳裂破以来,无论地面隆起是突然发生的,或是如多数地质学者所信,是缓慢地由许多隆起运动而成的,并没有什么大差别。而今地表已经变得如此完全平坦,以致在外观上已经看不出这等巨大转位(dislocation)的任何痕迹,例如克拉文断层(Craven fault)上<敏感詞>30英里,沿着这一线路,地层的垂直总变位自600到3,000英尺不等。关于在盎格尔西(Anglesea)陷落达2,300英尺的情形,拉姆齐教授曾发表过一篇报告;他告诉我说,他充分相信在梅里奥尼斯郡(Merionethshire)有一个陷落竟达12,000英尺,然而在这些情形里,地表上已没有任何东西可以表示这等巨大的运动了;裂隙两边的石堆已经夷为平地了。另一方面,世界各处,沉积层的叠积都是异常厚的。我在科迪勒拉山(Cordillera)曾测量过一片砾岩,有一万英尺厚。砾岩的堆积虽然比致密的沉积岩快些,然而从构成砾岩的小砾石磨成圆形须费许多时间看来,—块砾岩的积成是何等缓慢的。拉姆齐教授根据他在大多数场合里的实际测量,曾把英国不同部分的连续地质层的最大厚度告诉过我,其结果如下:
  古生代层(火成岩不在内) 57,154英尺
  第二纪层 13,190英尺
  第三纪层 2,240英尺
  总加起来是72,584英尺:这就是说,折合英里差不多有十三英里又四分之三。有些地质层在英格兰只是一薄层,而在欧洲大陆上却厚达数千英尺。还有,在每一个连续的地质层之间,按照大多数地质学者的意见,空白时期也极久长。所以英国的沉积岩的高耸叠积层、只能对于它们所经过的堆积时间,给予我们一个不确切的观念。对于这种种事实的考察,会使我们得到一种印象,差不多就像在白费力气去掌握“永恒”这个概念所得到的印象一样。
  然而,这种印象还是有部分错误的。克罗尔先生在一篇有趣的论文里说道:“我们对于地质时期的长度形成一种过大的概念,是不会犯错误的,如用年数来计算却要犯错误。”当地质学者们看到这巨大而复杂的现象,然后看到表示着几百万年的这个数字时,这二者在思想上会产生完全不同的印象,而登时要感到这个数字是过小了。关于大气的剥蚀作用,克罗尔先生根据某些河流每年冲下来的沉积物的既知量与其流域相比较,得出如下计算,即1,000英尺的坚硬岩石,渐次粉碎,须在六百万年的期间,才能从整个面积的平均水平线上移去。这似乎是一个可惊的结果,某些考察使人怀疑这个数字太大了,甚至把这个数字减到二分之一或四分之一,依然还是很可惊的。然而,很少有人知道一百万的真实意义是什么:克罗尔先生举出以下的比喻,用一狭条纸83英尺4英寸长,便它沿着一间大厅的墙壁伸延出去;于是在十分之一英寸处作一记号。让十分之一英寸代表一百年,全纸条就代表一百万年。但是必须记住,在上述的大厅里,被毫无意义的尺度所代表的一百年,对于本书的问题却具有何等重要的意义。若干卓越的饲养者,仅在他们的一生期间内,就大大地改变了某些高等动物,而高等动物在繁殖它们的种类上远比大多数的下等动物为慢,他们就这样育成了值得称为新的亚品种的。很少有人相当仔细地去注意过任何一个品系到半世纪以上的,所以一百年可以代表两个饲养者的连续工作。不能假定在自然状态下的物种,可以像在有计划选择指导之下的家养动物那样迅速地进行变化。与无意识的选择——即只在于保存最有用的或最美丽的动物,而无意于改变那个品种——的效果相比较,也许比较公平些;但是通过这种无意识选择的过程,各个品种在两个世纪或三个世纪的时间就会被显著地改变了。
  然而物种的变化大概更为缓慢得多,在同一地方内只有少数的物种同时发生变化。这种缓慢性是由于同一地方内的所有生物已经彼此适应得很好了,除非经过长久时间之后,由于某种物理变化的发生,或者由于新类型的移入,在这自然机构中是没有新位置的。还有,具有正当性质的变异或个体差异,即某些生物所赖以在改变了的环境条件下适应新地位的变异,也经常不会即刻发生。不幸的是我们没有方法根据时间的标准来决定,一个物种的改变须要经过多长时间;但是关于时间的问题,以后一定还要讨论。

  古生物标本的贫乏

  现在让我们看一看我们最丰富的地质博物馆,那里的陈列品是何等地贫乏呵!每一个人都会承认我们的搜集是不完全的。永远不应忘记那位可称赞的古生物学者爱德华·福布斯的话,他说,大多数的化石物种都是根据单个的而且常常是破碎的标本,或者是根据某一个地点的少数标本被发见和被命名的。地球表面只有一小部分曾作过地质学上的发掘,从每年欧洲的重要发见看来,可以说没有一处地方曾被十分注意地发掘过。完全柔软的生物没有一种能够被保存下来。落在海底的贝壳和骨骼,如果那里没有沉积物的掩盖,便会腐朽而消失。我们可能采取一种十分错误的观点,认为差不多整个海底都有沉积物正在进行堆积,并且其堆积速度足够埋藏和保存化石的遗骸。海洋的极大部分都呈亮蓝色,这说明了水的纯净。许多被记载的情形指出,一个地质层经过长久间隔的时期以后,被另一后生的地质层整个地遮盖起来,而下面的一层在这间隔的时期中并未遭受任何磨损,这种情形,只有根据海底常常多年不起变化的观点才可以得到解释。埋藏在沙子或砾层里的遗骸,遇到岩床上升的时候,一般会由于溶有炭酸的雨水的渗入而被分解。生长在海边高潮与低潮之间的许多种类动物,、有的似乎难得被保存下来。例如,有几种藤壶亚科(Chthamalinlae,无柄蔓足类的亚科)的若干物种,遍布全世界的海岸岩石上,数量非常之多。它们都是严格的海岸动物,除了在西西里(Sicily)发见过一个在深海中生存的地中海物种的化石以外,至今还没有在任何第三纪地质层里发见过任何<敏感詞>的物种:然而已经知道,藤壶属曾经生存于白垩纪(Chalk period)。最后,须要极久时间才堆积起来的许多巨大沉积物,却完全没有生物的遗骸,我们对此还不能举出任何的理由:其中最显著的例子之一是弗里希(Flysch)地质层,由页岩和沙岩构成,厚达数千英尺,有的竟达六千英尺,从维也纳到瑞士至少绵延300英里;虽然这等巨大岩层被极其仔细地考察过,但在那里除了少数的植物遗骸之外,并没有发见任何<敏感詞>化石。
  关于生活在中生代和古生代的陆栖生物,我们所搜集的证据是极其片断的,这就不必多谈了。例如,直到最近,除了莱尔爵士和道森博士(Dr.Dawson)在北美洲的石炭纪地层中所发见的一种陆地贝壳外,在这两个广阔时代中还没有发见过<敏感詞>陆地贝壳;不过目前在黑诛罗纪地层中已经发见了陆地贝壳。关于哺乳动物的遗骸,只要一看莱尔的《手册》里所登载的历史表,就会把真理带到家中,这比细读文字还能更好地去理解它们的保存是何等地偶然和稀少。只要记住第三纪哺乳动物的骨骼大部分是在洞穴里或湖沼的沉积物里被发见的,并且记住没有一个洞穴或真正的湖成层是属于第二纪或古生代的地质层的,那末它们的稀少就不足为奇了。
  但是,地质纪录的不完全主要还是由于另外一个比上述任何原因更为重要的原因;这就是若干地质层间彼此被广阔的间隔时期所隔开。许多地质学者以及像福布斯那样完全不相信物种变化的古生物学者,都曾力持此说。当我们看到一些著作中的地质层的表格时,或者当我们从事实地考察时,就很难不相信它们是密切连续的。但是,例如根据默奇森爵士(Sir R.Murchison)关于俄罗斯的巨著,我们知道在那个国家的重叠的地质层之间有着何等广阔的间隙;在北美洲以及在世界的许多<敏感詞>地方也是如此。如果最熟练的地质学者只把他的注意力局限在这等广大地域,那么他决不会想像到,在他的本国还是空白不毛的时代里,巨大沉积物已在世界的<敏感詞>地方堆积起来了,而且其中含有新而特别的生物类型。同时,如果在各个分离的地域内,对于连续地质层之间所经过的时间长度不能形成任何观念,那么我们可以推论在任何地方都不能确立这种观念。连续地质层的矿物构成屡屡发生巨大变化,一般意味着周围地域有地理上的巨大变化,因此便产生了沉积物,这与在各个地质层之间曾有过极久的间隔时期的信念是相符合的。
  我想,我们够理解为什么各区域的地质层几乎必然是间断的;就是说为什么不是彼此密切相连接的。当我调查在最近期间升高几百英尺的南美洲数千英里海岸时,最打动我的是,竟没有任何近代的沉积物,有足够的广度可以持续在即便是一个短的地质时代而不被磨灭。全部西海岸都有特别海产动物栖息着,可是那里的第三纪层非常不发达,以致若干连续而特别的海产动物的纪录大概不能在那里保存到久远的年代。只要稍微想一下,我们便能根据海岸岩石的大量陵削和注入到海洋里去的泥流来解释:为什么沿着南美洲西边升起的海岸,不能到处发见含有近代的、即第三纪的遗骸的巨大地质层,虽然在悠久的年代里沉积物的供给一定是丰富的。无疑应当这样解释,即当海岸沉积物和近海岸沉积物一旦被缓慢而逐渐升高的陆地带到海岸波浪的磨损作用的范围之内时,便会不断地被侵蚀掉。
  我想,我们可以断言,沉积物必须堆积成极厚的、极坚实的、或者极大的巨块,才能在它最初升高时和水平面连续变动的期间,去抵抗波浪的不断作用以及其后的大气陵削作用。这样厚而巨大的沉积物的堆积可由二种方法来完成:一种方法是,在深海底进行堆积,在这种情形下,深海底不像浅海那样地有许多变异了的生物类型栖息着;所以当这样的大块沉积物上升之后,对于在它的堆积时期内生存于邻近的生物所提供的纪录是不完全的。另一种方法是,在浅海底进行堆积,如果浅海底不断徐徐沉陷,沉积物就可以在那里堆积到任何的厚度和广度。在后一种情形里,只要海底沉陷的速度与沉积物的供给差不多平衡,海就会一直是浅的,而且有利于多数的和变异了的生物类型的保存,这样,一个富含化石的地质层便被形成,而且在上升变为陆地时,它的厚度也足以抵抗大量的剥蚀作用。
  我相信,差不多所有的古代地质层,凡是层内厚度的大部分富含化石的,都是这样在海底沉陷期间形成的。自从1845年我发表了关于这个问题的观点之后,就注意着地质学的进展,使我感到惊奇的是,当作者们讨论到这种或那种巨大地质层时,一个跟着一个地得出同样的结论,都说它是在海底沉陷期间堆积起来的。我可以补充他说,南美洲西岸的唯一古代第三纪地质层就是在水平面向下沉陷期间堆积起来的,并且由此得到了相当的厚度;这一地质层虽然具有巨大的厚度足以抵抗它曾经蒙受过的那种陵削作用,但今后它很难持续到一个久远的地质时代而不被磨灭。
  所有地质方面的事实都明白地告诉我们,每个地域都曾经过无数缓慢的水平面振动,而且这等振动的影响范围显然是很大的山结果,富含化石的、而且广度和厚度足以抵抗其后陵削作用的地质层,在沉陷期间,是在广大的范围内形成的,但它的形成只限于在以下的地方,即那里沉积物的供给足以保持海水的浅度并且足以在遗骸未腐化以前把它们埋藏和保存起来。相反地,在海底保持静止的期间,厚的沉积物就不能在最适于生物生存的浅海部分堆积起来。在上升的交替期间,这种情形就更少发生;或者更确切些说,那时堆积起来的海床,由于升起和进入海岸作用的界限之内,一般都被毁坏了。
  这些话主要是对海岸沉积物和近海岸沉积物而言的。在广阔的浅海里,例如从30或40到60英寻深的马来群岛的大部分海里,广大地质层大概是在上升期间形成的,然而在它徐徐上升的时候并没有蒙受过分的侵蚀;但是,由于上升运动,地质层的厚度比海的深度为小,所以地质层的厚度大概不会很大;同时这堆积物也不会凝固得很坚硬,而且也不会有各种地质层覆盖在它的上面;因此,这种地质层在此后水平面振动期间便极易被大气陵削作用和海水作用所侵蚀。然而,根据霍普金斯先生(Mr.Hopkins)的意见,如果地面的一部分在升起以后和未被剥蚀之前便行沉陷,那么,在上升运动中所形成的沉积物虽然不厚,却可能在以后受到新堆积物的保护,因而可以保存到一个长久的时期。
  霍普金斯先生还表示他相信,水平面相当广阔的沉积层很少会完全毁坏。但是一切地质学者,除了少数相信现在的变质片岩和深成岩曾经一度形成地球的原核(primordial nucleus)的人们以外,都承认深成岩外层的很大范围已被剥蚀。因为这等岩石在没有表被的时候,很少可能凝固和结晶;但是,变质作用如果在海洋的深底发生,则岩石以前的保护性表被大概不会很厚。这样,如果承认片麻岩、云母片岩、花岗岩、闪长岩等等必定一度曾被覆盖起来,那么对于世界许多地方的这等岩石的广大面积都已裸露在外,除了根据它们的被覆层已被完全剥蚀了的信念,我们怎能得到解释呢?广大面积上都有这等岩石的存在,是无可怀疑的:巴赖姆(Parime)的花岗岩地区,据洪堡(Humboldt)的描述,至少比瑞士大十九倍。在亚马逊河之南,布埃(Boue)曾划出一块由花岗岩构成的地区,它的面积等于西班牙、法国、意大利、德国的一部以及英国诸岛的面积的总合。这一地区还没有仔细被调查过,但是根据旅行家们所提出的一致证据,花岗岩的面积是很大的,例如,冯埃虚维格(Von Eschwege)曾经详细地绘制了这种岩石的区域图,它从里约热内卢延伸到内地,成一直线,长达260地理的英里;我朝另一方向旅行过150英里,所看到的全是花岗岩。有无数标本是沿着从里约热内卢到普拉他河口的全部海岸(全程1,100地理的英里)搜集来的,我检查过它们,它们都属于这一类岩石。沿着普拉他河全部北岸的内地,我看到除去近代的第三纪层外,只有一小部分是属于轻度变质岩的,这大概是形成花岗岩系的一部分原始被覆物的唯一岩石。现在谈谈大家所熟知的地区,美国和加拿大,我曾根据罗杰斯教授(Prof.H.D.Rogers)的精美地图所指出的,把它剪下来,并用剪下图纸的重量来计算,我发见变质岩(半变质岩不包含在内)和花岗岩的比例是19:12.5,二者的面积超过了全部较新的古生代地质层。在许多地方,如果把一切不整合地被覆在变质岩和花岗岩上面的沉积层除去,则变质岩和花岗岩比表面上所见到的还要伸延得广远,而沉积层本来不能形成结晶花岗岩的原
  始被覆物。因此,在世界某些地方的整个地质层可能已经完全被磨灭了,以致没有留下一点遗迹。
  这里还有一事值得稍加注意。在上升期间,陆地面积以及连接的海的浅滩面积将会增大,而且常常形成新的生物生活场所:前面已经说过,那里的一切环境条件对于新变种和新种的形成是有利的;但是这等期间在地质纪录上一般是空白的。另一方面,在沉陷期间,生物分布的面积和生物的数目将会减少(最初分裂为群岛的大陆海岸除外),结果,在沉陷期间,虽然会发生生物的大量绝灭,但少数新变种或新物种却会形成;而且也是在这一沉陷期间,富含化石的沉积物将被堆积起来。

  任何一个地质层中许多中间变种的缺乏

  根据上述的这些考察,可知地质记载,从整体来看,无疑是极不完全的。但是,如果把我们的注意力只局限在任何一种地质层上,我们就更难理解为什么始终生活在这个地质层中的近似物种之间,没有发见密切级进的诸变种。同一个物种在同一地质层的上部和下部呈现着一些变种,这些情形曾见于记载;特劳希勒得(Trautschold)所举出的有关菊石(Ammonites)的许多事例便是这样的;又如喜干道夫(Hi1gendorf)曾描述过一种极奇异的情形——在瑞士淡水沉积物的连续诸层中有复形扁卷螺(Planorbismultiformis)的十个级进的类型,虽然各地质层的沉积无可争论地需要极久的年代,还可以举出若干理由来说明为什么在各个地质层中普通不包含一条级进的连锁系列,介于始终在那里生活的物种之间;但我对于下述理由还不能给予适当相称的评价。
  虽然各地质层可以表示一个极久时间的过程,但比起一个物种变为另一个物种所需要的时间,可能还显得短些。二位古生物学者勃龙和伍德沃德(Woodward)曾经断言各地质层的平均存续期间比物种的类型的平均存续期间长二倍或三倍。我知道他们的意见虽然很值得尊重,但是,在我看来,似乎有不可克服的许多困难,阻碍着我们对于这种意见作出任何恰当的结论。当我们看到一个物种最初在任何地质层的中央部分出现时,就会极其轻率地去推论它以前不曾在他处存在过。还有,当我们看到一个物种在一个沉积层最后部分形成以前就消灭了的时候,将会同等轻率地去假定这个物种在那时已经绝灭了。我们忘记了欧洲的面积和世界的<敏感詞>部分比较起来是何等的小;而全欧洲的同一地质层的几个阶段也不是完全确切相关的。
  我们可以稳妥地推论,一切种类的海产动物由于气候的和<敏感詞>的变化,都曾作过大规模的迁徙;当我们看到一个物种最初在任何地质层中出现时,可能是这个物种在那个时候初次迁移到这个区域中去的。例如,众所周知,若干物种在北美洲古生代层中出现的时间比在欧洲同样地层中出现的时间为早;这显然由于它们从美洲的海迁移到欧洲的海中是需要时间的。在考察世界各地的最近沉积物的时候,到处都可看见少数至今依然生存的某些物种在沉积物中虽很普通,但在周围密接的海中则已绝灭,或者,相反的,某些物种在周围邻接的海中现在虽很繁盛,但在这一特殊的沉积物中却是绝无仅有。考察一下欧洲冰期内(这只是全地质学时期的一部分)的生物的确实迁徙量;并且考察一下在这冰期内的海陆沧桑的变化,气候的极端变化,以及时间的悠久经过,将是最好的一课。然而含有化石遗骸的沉积层,在世界的任何部分,是否曾经在这一冰期的整个期间于同一区域内连续进行堆积,是可以怀疑的。例如,密西西比(Mississippi)河口的附近,在海产动物最繁生的深度范围以内,沉积物大概不是在冰期的整个期间内连续堆积起来的:因为我们知道,在这个期间内,美洲的<敏感詞>地方曾经发生过巨大的地理变化。像在密西西比河口附近浅水中于冰期的某一部分期间内沉积起来的这等地层,在上升的时候,生物的遗骸由于物种的迁徙和地理的变化,大概会最初出现和消失在不同的水平面中。在遥远的将来,如果有一位地质学者调查这等地层,大概要试作这样的结论,认为在那里埋藏的化石生物的平均持续过程比冰期的期间为短,而实际上却远比冰期为长,这就是说,它们从冰期以前一直延续到今日。
  如果沉积物能在长久期间内连续进行堆积,并且这期间足够进行缓慢的变异过程,那么在这样的时候,才能在同一个地质层的上部和下部得到介于两个类型之间的完全级进的系列;因此,这堆积物一定是极厚的;并且进行着变异的物种一定是在整个期间内部生活在同一区域中。但是我们已经知道,一个厚的而全部含有化石的地质层,只有在沉陷期间才能堆积起来;并且沉积物的供给必须与沉陷量接近平衡,使海水深度保持接近一致,这样才可以使同种海产物种在同一地方内生活;但是,这种沉陷运动有使沉积物所来自的地面沉没在水中的倾向,这样,在沉陷运动连续进行的期间,沉积物的供给便会减少。事实上,沉积物的供给和沉陷量之间的完全接近平衡,大概是一种罕见的偶然事情;因为不止一个古生物学者都观察到在极厚的沉积物中,除了它们的上部和下部的范围附近,通常是没有生物遗骸的。
回复

使用道具 举报

25
 楼主| 发表于 2008-1-20 13:56:18 | 只看该作者
各个单独的地质层,也和任何地方的整个地质层相似,它的堆积,一般是间断的。当看到,而且确能常常看到,一个地质层由极其不同的矿物层构成时,我们可以合理地去设想沉积过程或多或少是曾经间断过的。虽然极其精密地对一个地质层进行考察,但关于这个地质层的沉积所耗费的时间长度,我们并不能得到任何概念。许多事例阐明,厚仅数英尺的岩层,却代表着<敏感詞>地方厚达数千英尺的、因而在堆积上需要莫大时间的地层。忽视这一事实的人们,甚至会怀疑这样薄的地质层会代表长久时间的过程。还有,一个地质层的下层在升高后,被剥蚀、再沉没,继而被同一地质层的上层所覆盖,在这方面其例也很多。这等事实阐明,在它的堆积期间内有何等广阔面容易被人忽视的间隔时期。在另外一些情形里,巨大的化石树依然像当时生长时那样地直立着,这明显地证明了,在沉积过程中,有许多长的间隔期间以及水平面的变化,如果没有这等树木被保存下来,大概不会想像出时间的间隔和水平面的变化的。例如,莱尔爵士和道森博士曾在新斯科舍(NovaScotia)发见了1,400英尺厚的石炭纪层,它含有古代树根的层次,彼此相叠,不少于68个不同的水平面。因此,如果在一个地质层的下部、中部和上部出现了同一个物种时,可能是这个物种没有在沉积的全部期间生活在同一地点,而是在同一个地质时代内它曾经经过几度的绝迹和重现。所以,如果这个物种在任何一个地质层的沉积期间内发生了显著的变异,则这一地质层的某一部分不会含有在我们理论上一定存在的一切微细的中间级进,而只是含有突然的、虽然也许是轻微的、变化的类型。
  最重要的是要记住,博物学者们没有金科玉律用来区别物种和变种;他们承认各个物种都有细小的变异性,但当他们遇到任何两个类型之间有稍微大一些的差异量,而没有最密切的中间级进把它们连接起来,就要把这两个类型列为物种;按照刚才所讲的理由,我们不可能希望在任何一个地质的断面中都看到这种连接。假定B和C是二个物种,并且假定在下面较古的地层中发见了第三个物种A;在这种情形下,纵使A严格地介于B和C之间,除非它能同时地被一些极密切的中间变种与上述任何一个类型或两个类型连接起来,A就会简单地被排列为第三个不同的物种。不要忘记,如同前面所解释的,A也许是B和C的真正原始祖先,而且在各方面并不一定严格地都介于它们二者之间。所以,我们可能从同一个地质层的下层和上层中得到亲种和它的若干变异了的后代,不过如果我们没有同时得到无数的过渡级进,我们将辨识不出它们的血统关系,因而就会把它们排列为不同的物种。
  众所周知,许多古生物学者们是根据何等微小的差异来区别他们的物种的。如果这些标本得自同一个地质层的不同层次,他们就会更不犹豫地把它们排列为不同的物种。某些有经验的贝类学者,现在已把多比内(D'Orbigny)和<敏感詞>学者所定的许多极完全的物种降为变种了;并且根据这种观点,我们确能看到按照这一学说所应当看到的那类变化的证据。再看一看第三纪末期的沉积物、大多数博物学者都相信那里所含有的许多贝壳和现今生存的物种是相同的;但是某些卓越的博物学者,如阿加西斯和匹克推特(Pictet),却主张所有这等第三纪的物种和现今生存的物种都是明确不同的,虽然它们的差别甚微;所以,除非我们相信这些著名的博物学者被他们的空想所误,而承认第三纪后期的物种确与它们的现今生存的代表并没有任何不同,或者除非我们与大多数博物学者的判断相反,承认这等第三纪的物种确与近代的物种完全不同,我们就能在这里获得所需要的那类微细变异屡屡发生的证据。如果我们观察一下稍微广阔一些的间隔时期,就是说观察一下同一个巨大地质层中的不同而连续的层次,我们就会看到其中埋藏的化石,虽然普通被列为不同的物种,但彼此之间的关系比起相隔更远的地质层中的物种,要密切得多;所以,关于朝着这个学说所需要的方向的那种变化,我们在这里又得了无疑的证据;但是关于这个问题,我将留待下章再加讨论。
  关于繁殖快而移动不大的动物和植物,像前面已经看到的那样,我们有理由来推测,它们的变种最初一般是地方性的;这等地方性的变种,非到它们相当程度地被改变了和完成了,不会广为分布和排除它们的亲类型的。按照这种观点,在任何地方的一个地质层中要想发见任何两个类型之间的一切早期过渡阶段的机会是很小的,因为连续的变化被假定是地方性的,即局限于某一地点的。大多数海产动物的分布范围都是广大的;并且我们看到,在植物里,分布范围最广的,最常呈现变种;所以,关于贝类以及<敏感詞>海产动物,那些具有最广大分布范围的,远远超过已知的欧洲地质层界限以外的,最常先产生地方变种,终于产生新物种;因此,我们在任何一个地质层中查出过渡诸阶段的机会又大大地被减少了。
  近来福尔克纳博士(Dr.Falconer)所主张的一种更重要的议论,引致了同样的结果,即各个物种进行变化的时期,虽然用年代计算是长久的,但比起它们没有进行任何变化的时期,大概还是短的。
  不应忘记,在今日能用中间变种把两个类型连接起来的完全标本是很稀少的,这样,除非从许多地方采集到许多标本以后,很少能证明它们是同一个物种。而在化石物种方面很少能够做到这样。我们只要问问,例如,地质学者在某一未来时代能否证明我们的牛、绵羊、马和狗的各品种是从一个或几个原始祖先传下来的,又如,栖息在北美洲海岸的某些海贝实际上是变种呢,还是所谓的不同物种呢?——它们被某些贝类学者列为物种,不同于它们的欧洲代表种,而被<敏感詞>一些贝类学者仅仅列为变种,这样问了之后,我们恐怕就能最好地了解用无数的、微细的、中间的化石连锁来连接物种是不可能的。未来的地质学者只有发见了化石状态的无数中间级进之后,才能证明这一点,而这种成功是极其不可能的。
  相信物种的不变性的作者们反复地主张地质学没有提供任何连锁的类型。我们在下章将会看到这种主张肯定是错误的。正如卢伯克爵士说过的,“各个物种都是<敏感詞>近似类型之间的连锁”。如果我们以一个具有二十个现存的和绝灭的物种的属为例,假定五分之四被毁灭了,那么没有人会怀疑残余的物种彼此之间将会显得格外不同。如果这个属的两极端类型偶然这样被毁灭了,那么这个属将和<敏感詞>的近似属更不相同。地质学研究所没有揭发的是,以前曾经有无限数目的中间级进存在过,它们就像现存变种那样地微细,并且把几乎所有现存的和绝灭的物种连结在一起。但不应期望可以做到这样;然而这却被反复地提出,作为反对我的观点的一个最重大的异议。
  用一个想像的例证把上述地质记录不完全的诸原因总结一下,还是值得的。马来群岛的面积大约相当于从北角(North Cape)到地中海以及从英国到俄罗斯的欧洲面积;所以,除去美国的地质层之外,它的面积与和一切多少精确调查过的地质层的全部面积不相上下。我完全同意戈德温-奥斯汀先生(Mr.Godwin-Austen)的意见,他认为马来群岛的现状(它的无数大岛屿已被广阔的浅海所隔开),大概可以代表以前欧洲的大多数地质层正在进行堆积的当时状况。马来群岛在生物方面是最丰富的区域之一;然而,如果把一切曾经生活在那里的物种都搜集起来,就会看出它们在代表世界自然史上将是何等地不完全!
  但是我们有各种理由可以相信,马来群岛的陆栖生物在我们假定堆积在那里的地质层中,一定被保存得极不完全。严格的海岸动物,或生活在海底裸露岩石上的动物,被埋藏在那里的,不会很多;而且那些被埋藏在砾石和沙中的生物也不会保存到久远的时代。在海底没有沉积物堆积的地方,或者在堆积的速率不足以保护生物体腐败的地方,生物的遗骸便不能被保存下来。
  富含各类化石的、而且其厚度在未来时代中足以延续到如过去第二纪层那样悠久时间的地质层,在群岛中一般只能于沉陷期间被形成。这等沉陷期间彼此要被巨大的间隔时期所分开,在这间隔时期内,地面或者保持静止或者继续上升;当继续上升的时候,在峻峭海岸上的含化石的地质层,会被不断的海岸作用所毁坏,其速度差不多和堆积速度相等,就如我们现今在南美洲海岸上所见到的情形那样,在上升期间,甚至在群岛间的广阔浅海中,沉积层也很难堆积得很厚,或者说也很难被其后的沉积物所覆盖或保护,因而没有机会可以存续到久远的未来。在沉陷期间,生物绝灭的大概极多;在上升期间,大概会出现极多的生物变异,可是这个时候的地质纪录更不完全。
  群岛全部或一部分沉陷以及与此同时发生的沉积物堆积的任何漫长时间,是否会超过同一物种类型的平均持续期间,是可以怀疑的;这等偶然的事情对于任何二个或二个以上物种之间的一切过渡级进的保存是不可缺少的。如果这等级进,没有全部被保存下来,过渡的变种看去就好像是许多新的虽然是密切近似的物种。各个沉陷的漫长期间还可能被水平面的振动所间断,同时在这样长久的期间内,轻微的气候变化也可能发生;在这等情形下,群岛的生物就要迁移,因而在任何一个地质层里就不能保存有关它们变异的密切连接的纪录。
  群岛的多数海产生物,现在已超越了它的界限而分布到数千英里以外;以此类推,可以明确地使我们相信,主要是这些广为分布的物种,纵使它们之中只有一些能够广为分布,最常产生新变种;这等变种最初是地方性的即局限于一个地方的,但当它们得到了任何决定性的优势,即当它们进一步变异和改进时,他们就会慢慢地散布开去,并且把亲缘类型排斥掉。当这等变种重返故乡时,因为它们已不同于先前的状态,虽然其程度也许是极其轻微的,并且因为它们被发见都是埋藏在同一地质层的稍稍不同的亚层中,所以按照许多古生物学者所遵循的原理,这些变种大概会被列为新而不同的物种。
  如果这等说法有某种程度的真实性,我们就没有权利去期望在地质层中找到这等无限数目的、差别微小的过渡类型,而这些类型,按照我们的学说,曾经把一切同群的过去物种和现在物种连接在一条长而分枝的生物连锁中。我们只应寻找少数的连锁,并且我们确实找到了它们——它们的彼此关系有的远些,有的近些;而这等连锁,纵使曾经是极密切的,如果见于同一地质层的不同层次,也会被许多生物学者列为不同的物种。我不讳言,如果不是在每一地质层的初期及末期生存的物种之间缺少无数过渡的连锁,而对我的学说构成如此严重威胁的话,我将不会想到在保存得最好的地质断面中,纪录还是如此贫乏。

  全群近似物种的突然出现

  物种全群在某些地质层中突然出现的事情,曾被某些古生物学者——如阿加西斯、匹克推特和塞奇威克(Sedgwick)——看作是反对物种能够变迁这一信念的致命异议。如果属于同属或同科的无数物种真的会一齐产生出来,那么这种事实对于以自然选择为依据的进化学说,的确是致命的。因为依据自然选择,所有从某一个祖先传下来的一群类型的发展,一定是一个极其缓慢的过程;并且这些祖先一定在它们的变异了的后代出现很久以前就已经生存了。但是,我们常常把地质纪录的完全性估价得过高,并且由于某属或某科未曾见于某一阶段,就错误地推论它们以前没有在那个阶段存在过。在所有的情形下,只有积极性的古生物证据,才可以完全信赖;而消极性的证据,如经验所屡屡指出的,是没有价值的,我们常常忘记,整个世界与被调查过的地质层的面积比较起来,是何等地巨大;我们还会忘记物种群在侵入欧洲的古代群岛和美国以前,也许在他处已经存在了很久,而且已经慢慢地繁衍起来了。我们也没有适当地考虑到在我们的连续地质层之间所经过的间隔时间,——在许多情形下,这一时间大概要比各个地质层堆积起来所需要的时间更长久。这些间隔会给予充分的时间以使物种从某一个亲类型繁生起来:而这等群或物种在以后生成的地质层中好像突然被创造出来似地出现了。
  这里我要把以前已经说过的话再说一遍,即,一种生物对于某种新而特别的生活方式的适应,例如空中飞翔,大概是需要长久连续的年代的;结果,它们的过渡类型常常会在某一区域内留存很久;但是,如果这种适应一旦成功,并且少数物种由于这种适应比别的物种获得了巨大的优势,那么只要较短的时间就能产生出许多分歧的类型来,这些类型便迅速地、广泛地散布于全世界。匹克推特教授在对本书的优秀书评里,评论了早期的过渡类型,并以鸟类作为例证,他不能看出假想的原始型的前肢的连续变异可能有什么利益。但是看一看“南方海洋”(Southern Ocean)上的企鹅;这等鸟的前肢,不是处于“既非真的臂、也非真的翼”这种真正的中间状态之下吗?然而这等鸟在生活斗争中胜利地占据了它们的地位;因为它们的个体数目是无限多的,而且它们的种类也是很多的。我并不是假定这里所见到的就是乌翅所曾经经过的真实过渡级进。但是翅膀大概可以有利于企鹅的变异了的后代,使它首先变为像大头鸭那样地能够在海面上拍拍,终于可以从海面飞起而滑翔于空中,相信这一点又有什么特别的困难呢?
  我现在举几个少数例子,来证明前面的话,并且示明在假定全群物种曾经突然产生的事情上我们何等容易犯错误。甚至在匹克推特关于古生物学的伟大著作第一版(出版于1844-46年)和第二版(1853-57年)之间的那样一个短暂期间内,对于几个动物群的开始出现和消灭的结论)就有很大的变更;而第三版大概还需要有更大的改变。我可以再提起一件熟知的事实,在不久之前发表的一些地质学论文中,都说哺乳动物是在第三纪开头才突然出现的。而现在已知的富含化石哺乳动物的堆积物之一。是属于第二纪层的中央部分的;并且在接近这一个大纪开头的新红沙岩中发见了真的哺乳动物。居维叶一贯主张,在任何第三纪层中没有猴子出现过;但是,目前在印度、南美洲和欧洲已于更古的第三纪中新世层中发见了它的绝灭种。若不是在美国的新红沙岩中有足迹被偶然保存下来,谁敢设想在那时代至少有不下三十种不同的鸟形动物——有些是巨大的——曾经存在呢?而在这等岩层中没有发现这等动物遗骨的一块碎片。不久以前,一些古生物学者主张整个鸟纲是在始新世突然产生的;但是现在我们知道,根据欧文教授的权威意见,在上部绿沙岩的沉积期间的确己有一种鸟生存了;更近,在索伦何芬(Solenhofen)的鲕状板岩(ooliiic slates)中发见了一种奇怪的鸟,即始祖鸟,它们具有晰蝎状的长尾,尾上每节生有一对羽毛,并且翅膀上生有二个发达的爪。任何近代的发见没有比这个发见更有力地阐明了,我们对于世界上以前的生物,所知道的是何等之少。
  我再举一例,这是我亲眼看到的,它曾使我大受感动。我在一篇论化石无柄蔓足类的报告里曾说道,根据现存的和绝灭的第三纪物种的大量数目,根据全世界——从北极到赤道——栖息于从高潮线到50英寻各种不同深度中的许多物种的个体数目的异常繁多,根据最古的第三纪层中被保存下来的标本的完整状态,根据甚至一个壳瓣(valve)的碎片也能容易地被辨识:根据这一切条件,我曾推论如果无柄蔓足类曾经生存于第二纪,它们肯定地会被保存下来而且被发见;但因为在这一时代的一些岩层中并没有发见过它们的一个物种,所以我曾断言这一大群是在第三纪的开头突然发展起来的。这使我很痛苦,因为当时我想,这会给物种的一个大群的突然出现增加一个事例。但是当我的著作就要出版的时候,一位练达的古生物学者波斯开先生(M.Bosquet)寄给我一张完整的标本图,它无疑是一种无柄蔓足类,这化石是他亲手从比利时的白垩层中采到的。就好像是为了使这种情形愈加动人似的,这种蔓足类是属于一个很普通的、巨大的、遍地存在的一属,即藤壶属,而在这一属中还没有一个物种曾在任何第三纪层中被发见过。更近的时候,伍德沃德在白垩层上部发见了无柄蔓足类的另外一个亚科的成员,四甲藤壶(Pyrgoma);所以我们现在已有丰富的证据来证明这群动物曾在第二纪存在过。
  有关全群物种分明突然出现的情形,被古生物学者常常提到的,就是硬骨鱼类。阿加西斯说,它们的出现是在白垩纪下部。这一鱼类包含现存物种的大部分。但是,株罗纪的和三叠纪的某些类型现在普通都被认为是硬骨鱼类;甚至某些古生代的类型也这样被一位高等权威学者分在这一类里。如果硬骨鱼类真是在北半球的白垩层开头时突然出现的,这当然是值得高度注意的事实;但是,除非能阐明这一物种在世界<敏感詞>地方也在同一时期内突然地和同时地发展了,它并没有造成不可克服的困难。在赤道以南并没有发见过任何化石鱼类,对此就不必多说了;而且读了匹克推特的古生物学,当可知道在欧洲的几个地质层也只发见过很少物种。某些少数鱼科现今的分布范围是有限制的;硬骨鱼类先前大概也有过相似的被限制的分布范围,它们只是在某一个海里大事发展之后,才广泛地分布开去。同时我们也没有任何权利来假定世界上的海从南到北永远是自由开放的,就像今天的情形那样。甚至在今天,如果马来群岛变为陆地,则印度洋的热带部分大概会形成一个完全被封锁的巨大盆地,在那里海产动物的任何大群都可能繁衍起来;直到它们的某些物种变得适应了较冷的气候,并且能够绕过非洲或澳洲的南方的角,而因此到达<敏感詞>远处海洋时,这等动物大概要局限在那一地区的。
  根据这等考察,根据我们对于欧洲和美国以外地方的地质学的无知,并且根据近十余年来的发见所掀起的古生物学知识中的革命,我认为对于全世界生物类型的演替问题进行独断,犹如一个博物学者在澳洲的一个不毛之地呆了五分钟之后就来讨论那里生物的数量和分布范围一样,似乎是太轻率了。

  近似物种群在已知的最下化石层中的突然出现

  还有一个相似的难点,更加严重。我所指的是动物界的几个主要部门的物种在已知的最下化石岩层中突然出现的情形。大多数的讨论使我相信,同群的一切现存物种都是从一个单一的祖先传下来的,这也同样有力地适用于最早的既知物种。例如,一切寒武纪的和志留纪的三叶虫类(trilobites)都是从某一种甲壳动物传下来的,这种甲壳类一定远在寒武纪以前就已生存了,并且和任何既知的动物可能都大大有所不同。某些最古的动物,如鹦鹉螺(Nautilus)、海豆芽(Lingula)等等,与现存物种并没有多大差异;按照我们的学说,这些古老的物种不能被假定是其后出现的同群的一切物种的原始祖先,因为它们不具有任何的中间性状。
  所以,如果我的学说是真实的,远在寒武纪最下层沉积以前,必然要经过一个长久的时期,这时期与从寒武纪到今日的整个时期相比,大概一样地长久,或者还要更长久的多;而且在这样广大的时期内,世界上必然已经充满了生物。这里我们遇到了一个强有力的异议;出为地球在适于生物居住的状态下是否已经经历了那么长久,似可怀疑。汤普森爵士(Sir.W.Thompson)断言,地壳的凝固不会在二千万年以下或四亿万年以上,大概是在九千八百万年以下或二亿万年以上。如此广泛的差限,表明了这些数据是很可怀疑的;而且<敏感詞>要素今后还可能被引入到这个问题里来。克罗尔先生计算自从寒武纪以来大约已经经过六千万年,但是根据从冰期开始以来生物的微小变化量来判断,这与寒武纪层以来生物确曾发生过大而多的变化相比较,六千万年似乎太短;而且以前的一亿四千万年对于在寒武纪中已经存在的各种生物的发展,也不能被看作是足够的。然而,如汤普森爵士所主张的,在极早的时代,世界所处的物理条件,其变化可能比今日更加急促而激烈;而这等变化则有助于诱使当时生存的生物以相应速率发生变化。
  至于在寒武系以前的这等假定最早时期内,为什么没有发见富含化石的沉积物呢?关于这一问题我还不能给予圆满的解答。以默奇森爵士为首的几位卓越的地质学者们最近还相信,我们在志留纪最下层所看到的生物遗骸,是生命的最初曙光。<敏感詞>一些高度有能力的鉴定者们,如莱尔和福布斯,则反对这一结论。我们不要忘记,精确知道的,不过是这个世界的一小部分。不久以前,巴兰得(M.Barrande)在当时已知的志留系之下,发见了另外一个更下的地层,这一层富有特别的新物种;而现在希克斯先生(Mr.Hicks)在南威尔士(South Wales)的更下面的下寒武纪层中,发见了富有三叶虫的、而且含有各种软体动物和环虫类的岩层。甚至在某些最低等的无生岩(azoicrock)中,也有磷质小块初沥青物质存在,这大概暗示了在这等时期中的生命。加拿大的劳伦纪层中有始生虫(Eozoon)存在,已为一般所承认。在加拿大的志留系之下有三大系列的地层,在最下面的地层中曾发见过始生虫。洛根爵士(Sir W.Logan)说道:“这三大系列地层总和起来的厚度可能远远超过以后从古生代基部到现在的所有岩石的厚度。如此,我们就被带回到一个如此辽远的时代,以致某些人可能把巴兰得所谓的原始动物的出现,看作是比较近代的事情。”始生虫的体制在一切动物纲中是最低级的,但是在它所属的这一纲中它的体制却是高级的;它曾以无限的数目存在过,正如道森博士所说的,它肯定以<敏感詞>的微小生物为食饵,而这些微小生物也一定是大量生存的。因此,我在1859年所写的有关生物远在寒武纪以前就已存在的一些话——这和以后洛根爵士所说的几乎相同——被证明是正确的了。尽管如此,要对寒武系以下为什么没有富含化石的巨大地层的叠积,举出任何好的理由,还是有很大困难的。要说那些最古的岩层已经由于剥蚀作用而完全消失,或者说它们的化石由于变质作用而整个消灭,似乎是不可能的,因为,果真如此,我们就会在继它们之后的地质层中只发见一些微小的残余物,并且这等残余物常常是以部分的变质状态存在的。但是,我们所拥有的关于俄罗斯和北美洲的巨大地面上的志留纪沉积物的描述,并不支持这样的观点:一个地质层愈古愈是不可避免地要蒙受极度的剥蚀作用和变质作用。
  目前对于这种情形还无法加以解释;因而这会被当作一种有力的论据来反对本书所持的观点。为了指出今后可能得到某种解释,我愿提出以下的假说。根据在欧洲和美国的若干地质层中的生物遗骸——它们似乎没有在深海中栖息过一的性质;并且根据构成地质层的厚达数英里的沉积物的量,我们可以推论产生沉积物的大岛屿或大陆地,始终是处在欧洲和北美洲的现存大陆附近。后来阿加西斯和<敏感詞>一些人也采取了同样的观点。但是我们还不知道在若干连续地质层之间的间隔期间内,事物的状态曾经是怎样的;欧洲和美国在这等间隔期间内,究竟是干燥的陆地,还是没有沉积物沉积的近陆海底,或者是一片广阔的、深不可测的海底,我们还不知道。
  看看现今的海洋,它是陆地的三倍,那里还散布着许多岛屿;但是我们知道,除新西兰以外,几乎没有一个真正的海洋岛(如果新西兰可以被称为真正的海洋岛)提供过一件古生代或第二纪地质层的残余物。因此,我们大概可以推论,在古生代和第二纪的时期内,大陆和大陆岛屿没有在今日海洋的范围内存在过;因为,如果它们曾经存在过,那么古生代层和第二纪层就有由它们的磨灭了的和崩溃了的沉积物堆积起来的一切可能;并且这等地层,由于在非常长久时期内一定会发生水平面的振动,至少有一部分隆起了。于是,如果我们从这等事实可以推论任何事情,那么我们就可以推论,在现今海洋展开的范围内,自从我们有任何纪录的最古远时代以来,就曾有过海洋的存在;另一方面我们也可以推论,在现今大陆存在的处所,也曾有过大片陆地存在,它们自从寒武纪以来无疑地蒙受了水平面的巨大振动。在我的论珊瑚礁一书中所附的彩色地图,使我作出如下的结论,即各大海洋至今依然是沉陷的主要区域。大的群岛依然是水平面振动的区域,大陆依然是上升的区域。但是我们没有任何理由设想,自从世界开始以来,事情就是这样依然如故的。我们大陆的形成,似乎由于在多次水平面振动的时候,上升力量占优势所致;但是这等优势运动的地域,难道在时代的推移中没有变化吗?远在寒武纪以前的一个时期中,现今海洋展开的处所,也许有大陆曾经存在过,而现今大陆存在的处所,也许有清澄广阔的海洋曾经存在过,例如,如果太平洋海底现在变为一片大陆,纵使那里有比寒武纪层还古的沉积层曾经沉积下来,我们也不应假定它们的状态是可辨识的。因为这些地层,由于沉陷到更接近地球中心数英里的地方,并且由于上面有水的非常巨大的压力,可能比接近地球表面的地层,要蒙受远为严重的变质作用。世界上某些地方的裸露变质岩的广大区域,如南美洲的这等区域,一定曾在巨大压力下蒙受过灼热的作用,我总觉得对于这等区域,似乎需要给予特别的解释;我们大概可以相信,在这等广大区域里,我们可以看到许多远在寒武纪以前的地质层是处在完全变质了的和被剥蚀了的状态之下的。
  这里所讨论的几个难点是,——虽然在我们的地质层中看到了许多介于现今生存为物种和既往曾经生存的物种之间的连锁,但并没有看见把它们密切连接在一起的无数微细的过渡类型;——在欧洲的地质层中,有若干群的物种突然出现;——照现在所知,在寒武纪层以下几乎完全没有富含化石的地质层;——所有这一切难点的性质无疑都是极其严重的。最卓越的古生物学者们,即居维叶、阿加西斯、巴兰得、匹克推特、福尔克纳、福布斯等,以及所有最伟大的地质学者们,如莱尔、默奇森、塞奇威克等,都曾经一致地而且常常猛烈地坚持物种的不变性。因此我们就可以看到上述那些难点的严重情形了。但是,莱尔爵士现在对于相反的一面给予了他的最高权威的支持;并且大多数的地质学者和古生物学者对于他们的以前信念也大大地动摇了。那些相信地质纪录多少是完全的人们,无疑还会毫不犹豫地反对这个学说的。至于我自己,则遵循莱尔的比喻,把地质的纪录看作是一部已经散失不全的、并且常用变化不一致的方言写成的世界历史;在这部历史中,我们只有最后的一卷,而且只与两三个国家有关系。在这一卷中,又只是在这里或那里保存了一个短章;每页只有寥寥几行。慢慢变化着的语言的每个字,在连续的各章中又多少有些不同,这些字可能代表埋藏在连续地质层中的、而且被错认为突然发生的诸生物类型。按照这种观点,上面所讨论的难点就可以大大地缩小,或者甚至消失。
回复

使用道具 举报

26
 楼主| 发表于 2008-1-20 13:57:26 | 只看该作者
第十一章 论生物在地质上的演替
新种慢慢地陆续出现——它们的变化的不同速率——物种一旦灭亡即不再出现——在出现和消灭上物种群所遵循的一般规律与单一物种相同——论绝灭——全世界生物类型同时发生变化——绝灭物种相互间以及绝灭物种与现存物种相互间的亲缘——古代类型的发展状况——同一区域内同一模式的演替——前章和本章提要。
  现在我们看一看,与生物在地质上的演替有关的若干事实和法则,究竟是与物种不变的普通观点最相一致呢,还是与物种通过变异和自然选择缓慢地、逐渐地发生变化的观点最相一致呢。无论在陆上和水中,新的物种是极其缓慢地陆续出现的。莱尔曾阐明,在第三纪的若干阶段里有这方面的证据,这几乎是不可能加以反对的;而且每年都有一种倾向把各阶段间的空隙填充起来,并使绝灭类型与现存类型之间的比例愈益成为级进的。在某些最近代的岩层里(如果用年来计算,虽然确属极古代的),其中不过只一两个物种是绝灭了的,并且其中不过只有一两个新的物种是一次出现的,这些新的物种或者是地方性的,或者据我们所知,是遍于地球表面的。第二纪地质层是比较间断的;但据勃龙说,埋藏有各层里的许多物种的出现和消灭都不是同时的。
  不同纲和不同属的物种,并没有按照同一速率或同一程度发生变化。在较古的第三纪层里,少数现存的贝类还可以在多数绝灭的类型中找见。福尔克纳曾就同样事实举出过一个显著例子,即在喜马拉雅山下的沉积物中有一种现存的鳄鱼与许多消灭了的哺乳类和爬行类在一起。志留纪的海豆芽与本属的现存物种差异很小;然而志留纪的大多数<敏感詞>软体动物和一切甲壳类已经大大地改变了。陆栖生物似乎比海栖生物变化得炔,在瑞士曾经观察到这种动人的例子。有若干理由可以使我们相信,高等生物比下等生物的变化要快得多:虽然这一规律是有例外的。生物的变化量,按照匹克推特的说法,在各个连续的所谓地质层里并不相同。然而,如果我们把密切关联的任何地质层比较一下,便可发现一切物种都曾经进行过某种变化。如果一个物种一度从地球表面上消失,没有理由可以使我们相信同样的类型会再出现。只有巴兰得所谓的“殖民团体”对于后一规律是一个极明显的例外,它们有一个时期曾侵入到较古的地质层里,于是使既往生存的动物群又重新出现了;但莱尔的解释是,这是从一个判然不同的地理区域暂时移入的一种情形,这种解释似乎可以令人满意。
  这些事实与我们的学说很一致,这学说并不包括那种僵硬的发展规律,即一个地域内所有生物都突然地、或者同时地、或者同等程度地发生变化。就是说变异的过程一定是缓慢的,而且一般只能同时影响少数物种;因为各个物种的变异性与一切别的物种的变异性并没有关系。至于可以发生的这等变异即个体差异,是否会通过自然选择而多少被积累起来,因而引起或多或少的永久变异量,则须取决于许多复杂的临时事件——取决于具有有利性质的变异,取决于自由的交配,取决于当地的缓慢变化的物理条件,取决于新移住者的迁人,并且取决于与变化着的物种相竞争的<敏感詞>生物的性质。因此,某一物种在保持相同形态上应比<敏感詞>物种长久得多;或者,纵有变化,也变化得较少,这是毫不足怪的。我们在各地方的现存生物之间发见了同样的关系;例如,马得拉的陆栖贝类和鞘翅类,与欧洲大陆上的它们最近亲缘差异很大,而海栖贝类和鸟类却依然没有改变。根据前章所说的高等生物对于它们有机的和无机的生活条件有着更为复杂的关系,我们大概就能理解陆栖生物和高等生物比海栖生物和下等生物的变化速度显然要快得多。当任何地区的生物多数已经变异了和改进了的时候,我们根据竞争的原理以及生物与生物在生活斗争中的最重要的关系,就能理解不曾在某种程度上发生变异和改进的任何类型大概都易于绝灭。因此,我们如果注意了足够长的时间,就可以明白为什么同一个地方的一切物种终久都要变异,因为不变异的就要归于绝灭。
  同纲的各成员在长久而相等期间内的平均变化量大概近乎相同;但是,因为富含化石的、持续久远的地质层的堆积有赖于沉积物在沉陷地域的大量沉积,所以现在的地质层几乎必须在广大的、不规则的间歇期间内堆积起来;结果,埋藏在连续地质层内的化石所显示的有机变化量就不相等了。按照这一观点,每个地质层并不标志着一种新而完全的创造作用,而不过是在徐徐变化着的戏剧里随便出现的偶然一幕罢了。
  我们能够清楚地知道,为什么一个物种一旦灭亡了,纵使有完全一样的有机的和无机的生活条件再出现,它也决不会再出现了。因为一个物种的后代虽然可以在自然组成中适应了占据另一物种的位置(这种情形无疑曾在无数事例中发生),而把另一物种排挤掉;但是旧的类型和新的类型不会完全相同;因为二者几乎一定都从它们各自不同的祖先遗传了不同的性状;而既已不同的生物将会按照不同的方式进行变异。例如,如果我们的扇尾鸽都被毁灭了,养鸽者可能育出一个和现有品种很难区别的新品种来的。但原种岩鸽如果也同样被毁灭掉,我们有各种理由可以相信,在自然状况下,亲类型一般要被它们改进了的后代所代替和消灭,那么在这种情形下,就很难相信一个与现存品种相同的扇尾鸽,能从任何<敏感詞>鸽种,或者甚至从任何<敏感詞>十分稳定的家鸽族育出来,因为连续的变异在某种程度上几乎一定是不同的,并且新形成的变种大概会从它的祖先那里遗传来某种不同的特性。
  物种群,即属和科,在出现和消灭上所遵循的规律与单一物种相同,它的变化有缓急,也有大小。一个群,一经消灭就永不再现;这就是说,它的生存无论延续到多久,总是连续的。我知道对于这一规律有几个显著的例外,但是例外是惊人的少,少到连福布斯、匹克推特和伍德沃德(虽然他们都坚决反对我们所持的这种观点)都承认这个规律的正确性;而且这一规律与自然选择学说是严格一致的。因为同群的一切物种无论延续到多久;都是<敏感詞>物种的变异了的后代,都是从一个共同祖先传下来的。例如,在海豆芽属里,连续出现于所有时代的物种,从下志留纪地层到今天,一定都被一条连绵不断的世代系列连结在一起。
  在前章里我们已经说过,物种的全群有时会呈现一种假象,表现出好似突然发展起来的;我对于这种事实已经提出了一种解释,这种事实如果是真实的话,对于我的观点将会是致命伤。但是这等情形确是例外;按照一般规律,物种群逐渐增加它的数目,一旦增加到最太限度时,便又迟早要逐渐地减少。如果一个属里的物种的数目,一个科里的属的数目,用粗细不同的垂直线来代表,使此线通过那些物种在其中发现的连续的质层向上升起,则此线有时在下端起始之处会假象地表现出并不尖锐,而是平截的:随后此线跟着上升而逐渐加粗,同一粗度常常可以保持一段距离,最后在上层岩床中逐渐变细而至消失,表示此类物种已渐减少,以至最后绝灭。一个群的物种数目的这种逐渐增加,与自然选择学说是严格一致的,因为同属的物种和同科的属只能缓慢地、累进地增加起来;变异的过程和一些近似类型的产生必然是一个缓慢的。逐渐的过程——一个物种先产生二个或三个变种,这等变种慢慢地转变成物种,它又以同样缓慢的步骤产生别的变种和物种,如此下去,就像一株大树从一条树干上抽出许多分枝一样,直到变成大群。

  论绝灭

  前此我们只是附带地谈到了物种和物种群的消灭。根据自然选择学说,旧类型的绝灭与新而改进的类型的产生是有密切关系的。旧观念认为地球上一切生物在连续时代内曾被灾变一扫而光,这已普遍地被抛弃了,就连埃利·得博蒙(Elie de Beaumont)、默奇森、巴兰得等地质学者们也都抛弃了这种观念,他们的一般观点大概会自然地引导他们到达这种结论。另一方面,根据对第三纪地质层的研究,我们有各种理由可以相信,物种和物种群先从这个地方、然后从那个地方、终于从全世界挨次地、逐渐地消灭。然而在某些少数情形里,由于地峡的断落而致大群的新生物侵入到邻海里去,或者由于一个岛的最后沉陷,绝灭的过程可能曾经是迅速的。单一的物种也好,物种的全群也好,它们的延续期间都极不相等:有些群,如我们所见到的,从已知的生命的黎明时代起一直延续到今比有些群在古生代结束之前就已经消灭了。似乎没有一条固定的法则可以决定任何一个物种或任何一个属能够延续多长时期。我们有理由相信,物种全群的消灭过程一般要比它们的产生过程为慢;如果它们的出现和消灭照前面所讲的用粗细不同的垂直线来代表,就可发见出这条表示绝灭进程线的上端的变细,要比表示初次出现和早期物种数目增多的下端来得缓慢,然而,在某些情形里,全群的绝灭,例如菊石,在接近第二纪末,曾经奇怪地突然发生了。
  物种的绝灭曾陷入极其无理的神秘中。有些作者甚至假定,物种就像个体有一定的寿命那样地也有一定的存续期间。大概不会有人像我那样地曾对物种的绝灭感到惊奇。我在拉普拉他曾于柱牙象(Mastodon)、大懒兽(Megatherium)、弓齿兽(Toxodon)以及<敏感詞>已经绝灭的怪物的遗骸中发见一颗马的牙齿,这些怪物在最近的地质时代曾与今日依然生存的贝类在一起共存,这真使我惊奇不止。我之所以感到惊奇,是因为自从马被西班牙人引进南美洲以后,就在全南美洲变成为野生的,并且以无比的速率增加了它们的数量,于是我问自己,在这样分明极其有利的生活条件下是什么东西会把以前的马在这样近的时代消灭了呢。但是我的惊奇是没有根据的。欧文教授即刻看出这牙齿虽然与现存的马齿如此相像,却属于一个已经绝灭了的马种的,如果这种马至今依然存在,只是稀少些,大概任何博物学者对于它们的稀少一点也不会感到惊奇;因为稀少现象是所有地方的所有纲里的大多数物种的属性。如果我们自问,为什么这一个物种或那一个物种会稀少呢。那末可以回答,是由于它的生活条件有些不利;但是,哪些不利呢,我们却很难说得出。假定那种化石马至今仍作为一个稀少的物种而存在,我们根据与所有<敏感詞>哺乳动物(甚至包括繁殖率低的象)的类比,以及根据家养马在南美洲的归化历史,肯定会感到它在更有利的条件下,一定会在很少几年内布满整个大陆,但是我们无法说出抑制它增加的不利条件是什么,是由于一种偶然事故呢,是由于几种偶然事故,也无法说出在马一生中的什么时候、在怎样程度上这些生活条件各自发生作用的。如果这些条件日益变得不利,不管如何缓慢,我们确实不会觉察出这种事实,然而那种化石马一定要渐渐地稀少,而终至绝灭;——于是它的地位便被那些更成功的竞争者取而代之。
  我们很难经常记住,各种生物的增加是在不断地受着不能觉察的敌对作用所抑制的;而且这等不能觉察的作用完全足以使它稀少,以至最后绝灭。对于这个问题我们了解得如此之少,以致我曾听到有些人对柱牙象以及更古的恐龙那样大怪物的绝灭屡屡表示惊异,好像只要有强大的身体就能在生活战争中取得胜利似的。恰恰相反,只是身体大,如欧文所阐明的,在某些情形里,由于大量食物的需要,反会决定它更快地绝灭。在人类没有栖住在印度或非洲以前,必有某种原因曾经抑制了现存象的继续增加。极富才能的鉴定者福尔克纳博士相信,抑制印度象增加的原因,主要是昆虫不断地折磨了、消弱了它们;布鲁斯对于阿比西尼亚的非洲象,也作过同样的结论。昆虫和吸血蝙蝠的确决定了南美洲几处地方的归化了的大形四足兽类的生存。
  在更近的第三纪地质层里,我们看到许多先稀少而后绝灭的情形;并且我们知道,通过人为的作用,一些动物之局部的或全部的绝灭过程,也是一样的。我愿意重复他说一下我在1845年发表的文章,那文章认为物种一般是先稀少,然后绝灭,这就好像病是死的前驱一样。但是,如果对于物种的稀少并不感到奇怪,而当物种绝灭的时候却大感惊异,这就好像对于病并不感到奇怪,而当病人死去的时候却感到惊异,以致怀疑他是死于某种暴行一样。
  自然选择学说是建筑在以下的信念上的:各个新变种,最终是各个新物种,由于比它的竞争者占有某种优势而被产生和保持下来;而且较为不利的类型的绝灭,几乎是不可避免的结果。在我们的家养生物中也有同样的情形,如果一个新的稍微改进的变种被培育出来,它首先就要排挤掉在它附近的改进较少的变种;当它大被改进的时候,就会像我们的短角牛那样地被运送到远近各地,并在他处取<敏感詞>品种的地位而代之。这样,新类型的出现和旧类型的消失,不论是自然产生的或人工产生的,就被连结在一起了。在繁盛的群里,一定时间内产生的新物种类型的数目,在某些时期大概要比已经绝灭的旧物种类型的数目为多;但是我们知道,物种并不是无限继续增加的,至少在最近的地质时代内是如此,所以,如果注意一下晚近的时代,我们就可以相信,新类型的产生曾经引起差不多同样数目的旧类型的绝灭。
  如同前面所解释过的和用实例说明过的那样!在各方面彼此最相像的类型之间,竞争也一般进行得最为剧烈。因此,一个改进了的和变异了的后代一般会招致亲种的绝灭;而且,如果许多新类型是从任何一个物种发展起来的,那么这个物种的最近亲缘,即同属的物种,最容易绝灭。因此,如我相信的,从一个物种传下来的若干新物种,即新属,终于会排挤掉伺科的一个旧属。但也屡屡有这样的情形,即某一群的一个新物种夺取了别群的一个物种的地位,因而招致它的绝灭。如果许多近似类型是从成功的侵入者发展起来的,势必有许多类型要让出仑们的地位;被消灭的通常是近似类型,因为它们一般由于共同地遗传了某种劣性而受到损害。但是,让位给<敏感詞>变异了的和改进了的物种的那些物种,无论是属于同纲或异纲,总还有少数可以保存到一个长久时间,这是因为它们适于某些特别的生活方式,或者因为它们栖息在远离的、孤立的地方,而逃避了剧烈的竞争。例如,三角蛤属(Trigonia)是第二纪地质层里的一个贝类的大属,它的某些物种还残存在澳洲的海里,而且硬鳞鱼类这个几乎绝灭的大群中的少数成员,至今还栖息在我们的淡水里。所以如同我们看到的,一个群的全部绝灭过程要比它的产生过程缓慢些。
  关于全科或全目的明显突然绝灭,如古生代末的三叶虫和第二纪末的菊石,我们必须记住前面已经说过的情形,即在连续的地质层之间大概间隔着广阔的时间,面在这些间隔时间内,绝灭大概是很缓慢的。还有,如果一个新群的许多物种,由于突然的移入,或者由于异常迅速的发展,而占据了一个地区,那么,多数的旧物种就会以相应炔的速度而绝灭:这样让出自己地位的类型普通都是那些近似类型,因为它们共同具有同样的劣性。
  因此,在我看来,单一物种以及物种全群的绝灭方式是与自然选择学说十分一致的。我们对于物种的绝灭,不必惊异;如果一定要惊异的话,那么还是对我们的自以为是——一时想像我们是理解了决定各个物种生存的许多复杂的偶然事情,表示惊异吧。各个物种都有过度增加的倾向,而且有我们很少觉察得出某种抑止作用常在活动,如果我们一刻忘记这一点,那么整个自然组成就会弄得完全不可理解。不论何时,如果我们能够确切说明为什么这个物种的个体会比那个物种的个体为多;为什么这个物种,而不是那个物种能在某一地方归化;一直到了那时,才能对于我们为什么不能说明任何一个特殊的物种或者物种群的绝灭,正当地表示惊异。

  全世界生物类型几乎同时发生变化

  生物类型在全世界几乎同时发生变化,任何古生物学的发见很少有比这个事实更加动人的了。例如,在极其不同气候下的、虽然没有一块白垩矿物碎块被发见的许多辽远地方,如在北美洲,在赤道地带的南美洲,在火地,在好望角,以及在印度半岛,我们欧洲的白垩层都能被辨识出来。因为在这等辽远的地方,某些岩层中的生物遗骸与白垩层中的生物遗骸呈现了明显的类似性。所见到的并不见得是同一物种,因为在某些情形里没有一个物种是完全相同的,但它们属于同科、同属和属的亚属,而且有时仅在极细微之点上,如表面上的斑条,具有相似的特性。还有,未曾在欧洲的白垩层中发现的、但在它的上部或下部地质层中出现的<敏感詞>类型,同样出现在这等世界上的辽远地方,若干作者曾在俄罗斯、欧洲西部和北美洲的若干连续的古生代层中观察到生物类型具有类似的平行现象;按照莱尔的意见,欧洲和北美洲的第三纪沉积物也是这样的。纵使完全不顾“旧世界”和“新世界”所共有的少数化石物种,古生代和第三纪时期的历代生物类型的一般平行现象仍然是显著的,而且若干地质层的相互关系也能够容易地被确定下来。
  然而,这等观察都是关于世界上的海栖生物的:我们还没有充分的资料可以判断在辽远地方里的陆栖生物和淡水生物是否也同样地发生过平行的变化。我们可以怀疑它们是否曾经这样变化过:如果把大懒兽、磨齿兽(Mylodon)、长头驼(马克鲁兽)和弓齿兽从拉普拉他带到欧洲,而不说明它们的地质上的地位,大概没有人会推想它们曾经和一切依然生存的海栖贝类共同生存过;但是,因为这等异常的怪物曾和柱牙象和马共同生存过,所以至少可以推论它们曾经在第三纪的某一最近时期内生存过。
  当我们说海栖的生物类型曾经在全世界同时发生变化时,决不假定这种说法是指同年,同一世纪,甚至不能假定它有很严格的地质学意义;因为,如果把现在生存于欧洲的和曾经在更新世(如用年代来计算,这是一个包括整个冰期的很遥远的时期)生存于欧洲的一切海栖动物与现今生存于南美洲或澳洲的海栖动物加以比较,便是最熟练的博物学者,大概也很难指出极其密切类似南半球的那些动物是欧洲的现存动物还是欧洲的更新世的动物。还有几位高明的观察者主张,美国的现存生物与曾经在欧洲第三纪后期的某些时期中生存的那些生物之间的关系,比起它们与欧洲的现存生物之间的关系,更为密切;如果的确是这样的话,那么,现在沉积于北美洲海岸的化石层,今后显然应当与欧洲较古的化石层归为一类。尽管如此,如果展望遥远将来的时代,我们可以肯定,一切较近代的海成地质层,即欧洲的、南北美洲的和澳洲的上新世的上层、更新世层以及严格的近代层,由于它们含有多少类似的化石遗骸,由于它们不含有只见于较古的下层堆积物中的那些类型,在地质学的意义上是可以正确地被列为同时代的。
  在上述的广泛意义里,生物类型在世界的远隔的诸地方同时发生变化的事实,曾经大大地打动了那些可称赞的观察者们,如得韦纳伊(MM.de Verneuil)和达尔夏克(d.Archiac)。当他们说到欧洲各地方的古生代生物类型的平行现象之后,又说:“我们如果被这种奇异的程序所打动,而把注意力转向到北美洲,并且在那里发见一系列的类似现象,那么可以肯定所有这等物种的变异,它们的绝灭,以及新物种的出现,显然决不能仅仅是由于海流的变化或<敏感詞>多少局部的和暂时的他种原因,而是依据支配全动物界的一般法则的。”巴兰得先生曾经有力他说出大意完全相同的话。把海流、气候或<敏感詞>物理条件的变化,看作是处于极其不同气候下的全世界生物类型发生这等大变化的原因,诚然是太轻率了。正如巴兰得所指出的,我们必需去寻求其所依据的某一特殊法则。如果我们讨论到生物的现在分布情形,并且看到各地方的物理条件与生物本性之间的关系是何等微小,我们将会更加清楚地理解上述的那一点。
  全世界生物类型平行演替这一重大事实,可用自然选择学说得到解释。新物种由于对较老的类型占有优势而被形成;这等在自己地区既居统治地位的、或比<敏感詞>类型占有某种优势的类型,将会产生最大数目的新变种,即初期的物种。我们在植物中可以找到关于这一问题的明确证据:占有优势的,即最普通的而且分散最广的植物会产生最大数目的新变种。占有优势的、变异着的而且分布辽阔的并在某种范围内已经侵入到<敏感詞>物种领域的物种,当然一定是具有最好机会作进一步分布的并且在新地区产生新变种和物种的那些物种。分散的过程,常常是很缓慢的,因为这要取决于气候的和地理的变化,要取决于意外的偶然事件,并且要取决于新物种对于它们必须经过的各种气候的逐步驯化。但是,随着时间的推移,占有优势的类型一般会在分布上得到成功,而最后取得胜利。在分离的大陆上的陆栖生物的分散大概要比连接的海洋中的海栖生物来得缓慢些。所以我们可以预料到,陆栖生物演替中的平行现象,其程度不如海栖生物的那样严密,而我们看到的也确是如此。
  这样,在我看来,全世界同样生物类型的乎行演替,就其广义来说,它们的同时演替,与新物种的形成是由于优势物种的广为分布和变异这一原理很相符合:这样产生的新物种本身就是优势的,因为它们已经比曾占优势的亲种和<敏感詞>物种具有某种优越性,并且将进一步地分布、进行变异和产生新类型,被击败的和让位给新的胜利者的老类型,由于共同地遗传了某种劣性,一般都是近似的群;所以,当新而改进了的群分布于全世界时,老的群就会从世界上消失;而且各地类型的演替,在最初出现和最后消失方面都倾向于一致的。
  还有与这个问题相关联的另一值得注意之点。我已经提出理由表示相信:大多数富含化石的巨大地质层,是在沉降期间沉积下来的;不具化石的空白极长的间隔,是在海底的静止时,或者隆起时,同样也在沉积物的沉积速度不足以淹没和保存生物的遗骸时出现的。在这等长久的和空白间隔时期,我想像各地的生物都曾经历了相当的变异和绝灭,而且从世界的<敏感詞>地方进行了大量的迁徒。因为我们有理由相信,广大地面曾蒙受同一运动的影响,所以严格的同一时代的地质层,大概往往是在世界同一部分中的广阔空间内堆积起来的;但我们决没有任何权利来断定这是一成不变的情形,更不能断定广大地面总是不变地要受同一运动的影响。当两个地质层在两处地方于几乎一样的、但并不完全一样的期间内沉积下来时,按照前节所讲的理由,在这两种情形中应该看到生物类型中相同的一般演替;但是物种大概不会是完全一致的,因为对于变异、绝灭和迁徙,这一地方比那一地方可能有稍微多点的时间。
  我猜想在欧洲是有这种情形的。普雷斯特维奇先生(Mr.Prestwich)在关于英法两国始新世沉积物的可称赞的论文里,曾在两国的连续诸层之间找出了严密的一般平行现象;但是当他把英国的某些层与法国的某些层加以比较时,虽然他看出两地同属的物种数目非常一致,然而物种本身,却有差异,除非假定有一海峡把两个海分开,而且在两个海里栖息着同时代的但不相同的动物群,否则从两国接近这一点来考虑,此等差异实难解释。莱尔对某些第三纪后期的地质层也作过相似的观察。巴兰得也指出在波希米亚和斯堪的纳维亚的连续的志留纪沉积物之间有着显著的一般平行现象;尽管如此,他还是看出了那些物种之间有着可惊的巨大差异量。如果这等地方的地质层不是在完全相同的时期内沉积下来的——某一地方的地质层往往相当于另一地方的空白间隔——而且,如果两处地方的物种是在若干地质层的堆积期间和它们之间的长久间隔期间徐徐进行变化的;那么在这种情形下,两处地方的若干地质层按照生物类型的一般演替,大概可以被排列为同一顺序,而这种顺序大概会虚假地呈现出严格的平行现象;尽管如此,物种在两处地方的显然相当的诸层中并不见得是完全相同的。
回复

使用道具 举报

27
 楼主| 发表于 2008-1-20 13:58:20 | 只看该作者
绝灭物种之间的亲缘及其与现存类型之间的亲缘

  现在让我们考察一下绝灭物种与现存物种之间的相互亲缘。一切物种都可归人少数的几个大纲;这一事实根据生物由来的原理即刻可以得到解释。任何类型愈古老,按照一般规律,它与现存类型之间的差异便愈大。但是,按照巴克兰(Buckland)很久以前所阐明的,绝灭物种都可以分类在至今还在生存的群里,或者分类在这些群之间。绝灭的生物类型可以有助于填满现存的属、科和目之间的间隔,这的确是真实的;但是,因为这种说法常被忽视或者甚至被否认,所以谈一谈这个问题并举出一些事例,是有好处的。如果我们把注意力局限在同一个纲里的现存物种或绝灭物种,则其系列的完整就远不如把二者结合在一个系统中。在欧文教授的文章中,我们不断地遇到概括的类型这种用语,这是用于绝灭动物上的;在阿加西斯的文章中,则用预示型或综合型;一切这等用语所指的类型,事实上都是中间的即连接的连锁。另一位卓越的古生物学者高得利(M.Gaudry)曾以最动人的方式阐明他在阿提卡(Attica)发见的许多化石哺乳类打破了现存属之间的间隔。居维叶曾把反刍类(Ruminants)和厚皮类(Pachyderms)排列为哺乳动物中最不相同的两个目;但是有如此众多的化石连锁被发掘出来了,以致欧文不得不改变全部的分类法,而把某些厚皮类与反刍类一齐放在同一个亚目中;例如,他根据中间级进取消了猪与骆驼之间的明显的广大间隔。有蹄类(Ungulata)即生蹄的四足兽,现在分为双蹄和单蹄两部分;但是南美洲的长头驼把这两大部分在一定的程度上连结起来了。没有人会否认三趾马是介于现存的马和某些较古的有蹄类型之间的。由热尔韦教授(Prof.Gervais)命名的南美洲印齿兽(Typotherium)在哺乳动物的链条中是一个何等奇异的连锁,它不能被纳入任何一个现存的目里。海牛类(Sirenia)形成了哺乳动物中很特殊的一群,现存的儒良(dugong)和泣海牛(lamentin)的最显著特征之一就是完全没有后肢,甚至连一点残余的痕迹也没有留下;但是,按照弗劳尔教授的意见,绝灭的海豕(Halitberium)都有一个骨化的大腿骨,与骨盘内的很发达的杯状窝连接在一起,这样就使它接近了有蹄的四足兽,而海牛类则在<敏感詞>方面与有蹄类相近似。鲸鱼类与一切<敏感詞>哺乳类大不相同,但是,第三纪的械齿鲸(Zeuglodon)和鲛齿鲸(Squa1odon)曾被某些博物学者列为一目,而赫胥黎教授却认为它们是无疑的鲸类,“而且对水栖食肉兽构成连结的连锁”。
  上述博物学者曾阐明,甚至鸟类和爬行类之间的广大间隔,出于意料之外地一方面由驼鸟和绝灭的始祖鸟,又一方面由恐龙的一种,细颚龙(Compsognathus)——这包含一切陆栖爬虫的最大的一类,部分地连接起来了。至于无脊椎动物,无比的权威巴兰得说,他每日都得到启发:虽然的确可以把古生代的动物分类在现存的群里,但在这样古老的时代,各群并不像今天一样地区别得那么清楚。
  有些作者反对把任何绝灭物种或物种群看作是任何两个现存物种或物种群之间的中间物。如果这个名词的意义是指一个绝灭类型在它的一切性状上都是直接介于二个现存类型或群之间的话,这种反对或许是正当的。但是在自然的分类里,许多化石物种的确处于现存物种中间,而且某些绝灭属处于现存属中间,甚至处于异科的属中间。最普通的情形似乎是(特别是差异很大的群,如鱼类和爬行类),假定它们今日是由二十个性状来区别的,则古代成员赖以区别的性状当较少,所以这两个群在以前多少要比在今日更为接近些。
  普通相信,类型愈古,其某些性状就愈能把现在区别很大的群连接起来。这种意见无疑只能应用于在地质时代的行程中曾经发生过巨大变化的那些群;可是要证明这种主张的正确性却是困难的,因为,甚至各种现存动物,如肺鱼,已被发见常常与很不相同的群有亲缘关系。然而,如果我们把古代的爬行类和两栖类、古代的鱼类、古代的头足类以及始新世的哺乳类,与各该纲的较近代成员加以比较时,我们一定会承认这种意见是有真实性的。
  让我们看一看这几种事实和推论与伴随着变异的生物由来学说符合到什么程度。因为这个问题有些复杂,我必须请读者再去看看第四章的图解。我们假定有数字的斜体字代表属,从它们那里分出来的虚线代表每一属的物种。这图解过于简单,列出来的属和物种太少,不过这对于我们并不重要。假定横线代表连续的地质层,并且把最上横线以下的一切类型都看作是已经绝灭了的。三个现存属,a14,q14,p14就形成一个小科;b14,f14是一个密切近似的科或亚科;o14,i14,m14是第三个科。这三个科和从亲类型(A)分出来的几条系统线上的许多绝灭属合起来成为一个目,因为它们都从古代原始祖先共同遗传了某些东西。根据以前这个图解所说明过的性状不断分歧的原理,不论任何类型,愈是近代的,一般便愈与古代原始祖先不同。因此,我们对最古化石与现存类型之间差异最大这个规律便可有所了解。然而我们决不可假设性状分歧是一个必然发生的偶然事件;它完全取决于一个物种的后代能否因为性状分歧而在自然组成中攫取许多的、不同的地位。所以,一个物种随着生活条件的稍微改变而略被改变,并且在极长的时期内还保持着同样的一般特性,如同我们见到的某些志留纪类型的情形,是十分可能的。这种情形在图解中是用F14来表示的。
  一切从(A)传下来的许多类型,无论是绝灭的和现存的,如同前面说过的,形成一个目;这一个目由于绝灭和性状分歧的连续影响,便被分为若干亚科和科,其中有些被假定已在不同的时期内灭亡了,有些却一直存续到今天。
  考察一下图解,我们便可看出:如果假定埋藏在连续地质层中的许多绝灭类型,是在这个系列的下方几个点上发见的,那么最上线的三个现存科的彼此差异就会少些。例如,如果a1,a5,a10,f8,m3,m8,m9等属已被发掘出来,那三个科就会如此密切地连结在一起,大概它们势必会连合成一个大科,这与反刍类和某些厚皮类曾经发生过的情形几乎是一样的。然而有人反对把绝灭属看作是连结起三个科的现存属的中间物,这种意见一部分也许是对的,因为它们之成为中间物,并不是直接的,却是通过许多大不相同的类型,经过长而迂回的路程的。如果许多绝灭类型是在中央的横线之一,即地质层——例如No.VI——之上发见的,而且在这条线的下面什么也没有发见,那么各科中只有两个科(在左边a14等和b14等两个科)大概势必合而为一;留下的这两个科在相互差异上要比它们的化石被发见以前来得少些。还有,在最上线上由八个属(a14到m14)形成的那三个科,如果假定以六种主要的性状而彼此区别,那么曾经在VI横线那个时代生存过的各科,肯定要以较少数目的性状而互相区别;因为它们在进化的这样早期阶段,从共同祖先分歧的程度大概要差些。这样,古老而绝灭的属在性状上便多少介于它们的变异了的后代之间,或介于它们的旁系亲族之间。
  在自然状况下,这个过程要比在图解中所表示的复杂得多;因为群的数目会更多;它们存续的时间会极端不等,而且它们变异的程度也不会相同。因为我们所掌握的不过是地质纪录的最后一卷,而且是很不完全的,除去在稀有的情况下,我们没有权利去期望把自然系统中的广大间隔填充起来,因而把不同的科或目连结起来。
  一切我们所能期望的,只是那些在既知地质时期中曾经发生过巨大变异的群,应该在较古的地质层里彼此稍微接近些;所以较古的成员要比同群的现存成员在某些性状上的彼此差异来得少些;根据我们最优秀古生物学者们的一致证明,情形常常是这样。
  这样,根据伴随着变异的生物由来学说,有关绝灭生物类型彼此之间、及其与现存类型之间的相互亲缘关系的主要事实便可圆满地得到解释,而用<敏感詞>任何观点是完全不能解释这等事实的。
  根据同一学说,明显地,地球历史上任何一个大时期内的动物群,在一般性状上将介于该时期以前和以后的动物之间。这样,生存在图解上第六个大时期的物种,是生存在第五个时期的物种的变异了的后代,而且是第七个时期的更加变异了的物种的祖先;因此,它们在性状上几乎不会不是介于上下生物类型之间的。然而我们必须承认某些以前的类型已经全部绝灭,必须承认在任何地方都有新类型从<敏感詞>地方移入,还必须承认在连续地质层之间的长久空白间隔时期中曾发生过大量变化。承认了这些事情,则每一个地质时代的动物群在性状上无疑是介于前后动物群之间的。关于这点我们只要举出一个事例就可以了,即当泥盆系最初被发见时,这个系的化石立刻被古生物学者们认为在性状上是介于上层的石炭系和下层的志留系之间的。但是,每一个动物群并不一定完全介于中间,因为在连续的地质层中有不等的间隔时间。
  每一时代的动物群从整体上看,在性状上是近乎介于以前的和以后的动物群之间的,某些属对于这一规律虽为例外,但不足以构成异议以动摇此说真实性。例如,福尔克纳博士曾把柱牙象和象类的动物按照两种分类法进行排列——第一个按照它们的互相亲缘,第二个按照它们的生存时代,结果二者并不符合,具有极端性状的物种,不是最古老的或最近代的;具有中间性状的物种也不是属于中间时代的。但是在这种以及在<敏感詞>类似的情形里,如果暂时假定物种的初次出现和消灭的记录是完全的(并不会有这种事),我们就没有理由去相信连续产生的各种类型必定有相等的存续时间。一个极古的类型可能有时比在<敏感詞>地方后生的类型存续得更为长久,栖息在隔离区域内的陆栖生物尤其如此。试以小事情来比大事情;如果把家鸽的主要的现在族和绝灭族按照亲缘的系列加以排列,则这种排列大概不会与其产出的顺序密切一致,而且与其消灭的顺序更不一致:因为,亲种岩鸽至今还生存着;许多介于岩鸽和传书鸽之间的变种已经绝灭了;在喙长这一主要性状上站在极端的传书鸽,比站在这一系列相反一端的短嘴翻飞鸽发生较早。
  来自中间地质层的生物遗骸在某种程度上具有中间的性状,与这种说法密切关连的有一个事实,是一切古生物学者所主张的,即二个连续地质层的化石彼此之间的关系,远比二个远隔的地质层的化石彼此之间的关系,更为密切。匹克推特举出一个熟知的事例:来自白垩层的几个阶段的生物遗骸一般是类似的,虽然各个阶段中的物种有所不同。仅仅这一事实,由于它的一般性,似乎已经动摇了匹克推特教授的物种不变的信念。凡是熟知地球上现存物种分布的人,对于密切连续的地质层中不同物种的密切类似性,不会企图用古代地域的物理条件保持近乎一样的说法去解释的。让我们记住,生物类型,至少是栖息在海里的生物类型,曾经在全世界几乎同时发生变化,所以这些变化是在极其不同的气候和条件下进行的。试想更新世包含着整个冰期,气候的变化非常之大,可是看一看海栖生物的物种类型所受到的影响却是何等之小。
  密切连续的地质层中的化石遗骸,虽然被排列为不同的物种,但密切相似,其全部意义根据生物由来学说是很明显的,因为各地质层的累积往往中断,并且因为连续地质层之间存在着长久的空白间隔,如我在前章所阐明的,我们当然不能期望在任何一个或二个地质层中,找到在这些时期开始和终了时出现的物种之间的一切中间变种:但是我们在阀隔的时间(如用年来计量这是很长久的,如用地质年代来计量则并不长久)之后,应该找到密切近似的类型,即某些作者所谓的代表种;而且我们确曾找到了。总之,正如我们有权利所期望的那样,我们已经找到证据来证明物种类型的缓慢的、难被觉察的变异。

  古代生物类型与现存生物类型相比较的发展状态

  我们在第四章里已经看到,已经成熟了的生物的器官的分化和专业化程度,是它们完善化或高等化程度的最好标准。我们也曾看到,器官的专业化既然对于生物有利益,自然选择就有使各生物的体制愈益专业化和完善化的倾向,在这种意义上,就是使得它们愈益高等化了;虽然同时自然选择可以听任许多生物具有简单的和不改进的器官,以适应简单的生活条件,并且在某些情形下,甚至使其体制退化或简单化,而让这等退化生物能够更好地适应生活的新行程。在另一种和更一般的情形里,新物种变得优于它们的祖先;因为它们在生活斗争中必须打败一切与自己进行切身竞争的较老类型。我们因此可以断言,如果始新世的生物与现存的生物在几乎相似的气候下进行竞争,前者就会被后者打败或消灭,正如第二纪的生物要被始新世的生物以及古生代的生物要被第二纪的生物所打败一样。所以,根据生存竞争中的这种胜利的基本试验,以及根据器官专业化的标准,按照自然选择的学说,近代类型应当比古代老类型更为高等。事实果真是这样的吗?大多数古生物学者大概都会作出肯定的回答,而这种回答虽然难于证明,似乎必须被认作是正确的。
  某些腕足类从极其遥远的地质时代以来,只发生过轻微的变异;某些陆地的和淡水的贝类从我们所能知道的它们初次出现的时候以来,差不多就保持着同样的状态,然而这些事实对于上述的结论并不是有力的异议。如卡彭特博士(DR.Carpenter)所主张的,有孔类(Foraminifera)的体制甚至从劳伦纪以来就没有进步过,但这并不是不能克服的难点;因为有些生物必须继续地适应简单的生活条件,还有什么比低级体制的原生动物能够更好地适于这种目的吗?如果我的观点把体制的进步看作是一种必不可少的条件,那么上述的异议对于我的观点则是致命的打击,又例如,如果上述有孔类能够被证明是在劳伦纪开始存在的,或者上述腕足类是在寒武纪开始存在的,那么上述的异议对于我的观点也是致命的打击;因为在这种情形下,这等生物还没有足够的时间可以发展到当时的标准。当进步到任何一定高度的时候,按照自然选择的学说,就没有再继续进步的必要;虽然在各个连续的时代,它们势必稍微被改变,以便与它们的生活条件的微细变化相适应,而保持它们的地位。前面的异议系于另一个问题,即:我们是否确实知道这世界曾经历几何年代以及各种生物类型最初出现在什么时候;而这个问题是很费讨论的。
  体制,从整体看来,是否进步,在许多方面都是异常错综复杂的问题。地质纪录在一切时代都是不完全的,它不能尽量追溯到往古而毫无错误地明白指出在已知的世界历史里,体制曾经大大进步了。甚至在今天,注意一下同纲的成员,哪些类型应当被排列为最高等的,博物学者们的意见就不一致;例如,有些人按照板鳃类(selaceans)即沙鱼类的构造在某些要点上接近爬行类,就把它们看作是最高等的鱼类;另外有些人则把硬骨鱼类看作是最高等的。硬鳞鱼类介于板鳃类和硬骨鱼类之间;硬骨鱼类今日在数量上是占优势的,但从前只有板鳃类和硬鳞鱼类生存,在这种情形下,依据所选择的高低标准,就可以说鱼类在它的体制上曾经进步了或退化了。企图比较不同模式的成员在等级上的高低,似乎是没有希望的;谁能决定乌贼是否比蜜蜂更为高等呢?——伟大的冯贝尔相信,蜜蜂的体制“事实上要比鱼类的体制更为高等,虽然这种昆虫属于另一种模式”。在复杂的生存斗争里,完全可以相信甲壳类在它们自己的纲里并不是很高等的,但它能打败软体动物中最高等的头足类;这等甲壳类虽然没有高度的发展,如果拿一切考验中最有决定性的竞争法则来判断,它在无脊椎动物的系统里会占有很高的地位。当决定哪些类型在体制上是最进步的时候,除却这等固有的困难以外,我们不应当只拿任何两个时代中的一个纲的最高等成员来比较——虽然这无疑是决定高低程度的一种要素,也许是最重要的要素——我们应当拿两个时代中的一切高低成员来比较。在一个古远的时代,最高等的和最低等的软体动物,头足类和腕足类,在数量上是极多的;在今天,这两类已大大减少了,而具有中间体制的<敏感詞>种类却大大增加了;结果,有些博物学者主张软体动物从前要比现在发达得高些;但在反对的方面也举出强有力的例子,这就是腕足类的大量减少,以及现存头足类虽在数量上是少的,但体制却比它们的古代代表高得多了。我们还应当比较两个任何时代的全世界高低各纲的相对比例数,例如,如果今日有五万种脊推动物生存着,并且如果我们知道以前某一时代只有一万种生存过,我们就应当把最高等的纲里这种数量的增加(这意味着较低等类型的大量被排斥)看做是全世界生物体制的决定性的进步。因此,我们可以知道,在这样极端复杂的关系下,要想对于历代不完全知道的动物群的体制标准进行完全公平的比较,是何等极端的困难。
  只要看看某些现存的动物群和植物群,我们就更能明白地理解这种困难了。欧洲的生物近年来以非常之势扩张到新西兰,并且夺取了那里许多土著动植物先前占据的地方,据此我们必须相信:如果把大不列颠的所有动物和植物放到新西兰去,许多英国的生物随着时间的推移大概可以在那里彻底归化,而且会消灭许多土著的类型。另一方面,从前很少有一种南半球的生物曾在欧洲的任何部分变为野生的,根据这种事实,如果把新西兰的一切生物
  放到大不列颠去,我们很可怀疑它们之中是否会有很多的数目能够夺取现在被英国植物和动物占据着的地方。从这种观点来看,大不列颠的生物在等级上要比新西兰的生物高得多了。然而最熟练的博物学者,根据二地物种的调查,并不能预见到这种结果。
  阿加西斯和若干<敏感詞>有高度能力的鉴定者都坚决主张,古代动物与同纲的近代动物的胚胎在某种程度上是类似的;而且绝灭类型在地质上的演替与现存类型的胚胎发育是近乎平行的。这种观点与我们的学说极其一致。在下章里我当说明成体和胚胎的差异是由于变异在一个不很早的时期发生、而在相应年龄得到遗传的原故。这种过程,听任胚胎几乎保持不变,同时使成体在连续的世代中继续不断地增加差异。周此胚胎好像是被自然界保留下来的一张图画,它描绘着物种先前未曾大事变化过的状态。这种观点大概是正确的,然而也许永远不能得到证明。例如,最古的已知哺乳类、爬行类和鱼类都严格地属于它们的本纲,虽然它们之中有些老类型彼此之间的差异比今日同群的典型成员彼此之间的差异稍少,但要想找寻具有脊推动物共同胚胎特性的动物,恐非等到在寒武纪地层的最下部发见富有化石的岩床之后,大概是不可能的——但发见这种地层的机会是很少的。

  在第三纪末期同一地域内同样模式的演替

  许多年前克利夫特先生(Mr.Clift)曾阐明,从澳洲洞<敏感詞>找到的化石哺乳动物与该洲的现存有袋类是密切近似的。在南美洲拉普拉他的若干地方发见的类似犰狳甲片的巨大甲片中,同样的关系也是显著的,甚至未经训练的眼睛也可以看出。欧文教授曾以最动人的方式阐明,在拉普拉他埋藏的无数化石哺乳动物,大多数与南美洲的模式有关系。从伦德(MM.Lund)和克劳森(Clausen)在巴西洞穴里采集的丰富化石骨中,可以更明白地看到这种关系,这等事实给我的印象极深,我曾在1839年和1845年坚决主张“模式演替的法则”和“同一大陆上死亡者和生存者之间的奇妙关系”,欧文教授后来把这种概念扩展到“旧世界”的哺乳动物上去。在这位作者复制的新西兰绝灭巨型鸟中,我们看到同样的法则。我们在巴西洞穴的鸟类中也可看到同样的法则。伍德沃德教授曾阐明同样的法则对于海栖贝类也是适用的,但是由于大多数软体动物分布广阔,所以它们并没有很好地表现出这种法则。还可举出<敏感詞>的例子,如马得拉的绝灭陆栖贝类与现存陆栖贝类之间的关系,以亚拉尔里海(Aralo-Caspian)的绝灭碱水贝类与现存碱水贝类之间的关系。
  那么,同一地域内同一模式的演替这个值得注意的法则意味着什么呢?如果有人把同纬度下澳洲的和南美洲的某些地方的现存气候加以比较之后,就企图以不同的物理条件来解释这两个大陆上生物的不同,而另一方面又以相同的物理条件来解释第三纪末期内各个大陆上同一模式的一致,那么,他可算是大胆了。也不能断言有袋类主要或仅仅产于澳洲:贫齿类以及<敏感詞>美洲模式的动物仅仅产于南美洲,是一种不变的法则。因为我们知道,在古代欧洲曾有许多有袋类动物栖住过;并且我在上述出版物中曾经阐明美洲陆栖哺乳类的分布法则,从前和现在是不同的。从前北美洲非常具有该大陆南半部分的特性;南半部分从前也比今天更为密切近似北半部分。根据福尔克纳和考特利(Cautley)的发见,同样地我们知道印度北部的哺乳动物,从前比今天更为密切近似非洲的哺乳动物。关于海栖动物的分布,也可以举出类似的事实来。
  按照伴随着变异的生物由来学说,同一地域内同样模式持久地但并非不变地演替这一伟大法则,便立刻得到说明;因为世界各地的生物,在以后连续的时间内,显然都倾向于把密切近似而又有某种程度变异的后代遗留在该地,如果一个大陆上的生物从前曾与另一大陆上砌生物差异很大,那么它们的变异了的后代将会按照近乎同样的方式和程度发生更大的差异。但是经过了很长的间隔期间以后,同时经过了容许大量互相迁徙的巨大地理变化以后,较弱的类型会让位给更占优势的类型,而生物的分布就完全不会一成不变了。
  有人也许以嘲笑的方式来问,我是否曾假定从前生活在南美洲的大懒兽以及<敏感詞>近似的大怪物曾遗留下树懒、犰狳和食蚁兽作为它们的退化了的后代,这是完全不能承认的。这等巨大动物曾全部绝灭,没留下后代。但在巴西的洞<敏感詞>有许多绝灭的物种在大小和一切<敏感詞>性状上与南美洲现存物种密切近似;这等化石中的某些物种也许是现存物种的真实祖先。千万不要忘记,按照我们的学说,同属的一切物种都是某一物种的后代,所以,如果有各具八个物种的六个属,见于一个地质层中,而且有六个<敏感詞>近似的或代表的属见于连续的地层中,它们也具有同样数月的物种,那么,我们可以断言,一般各个较老的属只有一个物种会留下变异了的后代,构成含有若干物种的新属,各个老属的<敏感詞>七个物种皆归灭亡,而没有留下后代。还有更普通的情形,即六个老属中只有二个或三个属的二个物种或三个物种是新属的双亲:<敏感詞>物种和<敏感詞>老属全归绝灭。在衰颓的目里,如南美洲的贫齿类,属和物种的数目都在减少下去,所以只有更少的属和物种能留下它们的变异了的嫡系后代。

  前章和本章提要

  我曾试图阐明,地质纪录是极端不完全的;只有地球一小部分曾被仔细地做过地质学的调查:只有某些纲的生物在化石状态下大部分被保存下来;在我们博物馆里保存的标本和物种的数目,即使与仅仅一个地质层中所经历的世代数目相比也完全等于零。由于沉陷对富含许多类化石物种而且厚到足以经受未来陵削作用的沉积物的累积几乎是必要的,因此,在大多数连续地质层之间必有长久的间隔期间;在沉陷时代大概有更多的绝灭生物,在上升时代大概有更多的变异而且纪录也保存的更不完全;各个单一的地质层不是继续不断地沉积起来的;各个地质层的持续时间与物种类型的平均寿命,比较起来,大概要短些;在任何一个地域内和任何一个地质层中,迁徙对于新类型的初次出现,是有重要作用的;分布广的物种是那些变异最频繁的、而且经常产生新种的那些物种;变种最初是地方性的;最后一点,各个物种虽然必须经过无数的过渡阶段,但各个物种发生,变化的时期如用年代来计算大概是多而长的,不过与各个物种停滞不变的时期比较起来,还是短的。如果把这等原因结合起来看,便可大致说明为什么我们没有发见中间变种(虽然我们确曾发见过许多连锁)以极微细级进的阶梯把一切绝灭的和现存的物种连结起来。还必须经常记住,二个类型之间的任何连接变种,也许会被发见,但若不是整个连锁全部被发见,就会被排列为新的、界限分明的物种;出为不能说我们已经有了任何确实的标准,可以用来辨别物种和变种。
  凡是不接受地质纪录是不完全的这一观点的人,当然不能接受我们的全部学说,因为他会徒劳地发问,以前必曾把同一个大地质层内连续阶段中发见的那些密切近似物种或代表物种连接起来的无数过渡连锁在哪里呢?他会不相信在连续的地质层之间一定要经过悠久的间隔期间:他会在考察任何一个大区域的地质层时,如欧洲那样的地质层,忽略了迁徙起着何等重要的作用;他会极力主张整个物种群分明是(但常常是假象的)突然出现的。他会问:必有无限多的生物生活在寒武系沉积起来的很久以前,但它们的遗骸在哪里呢?现在我们知道,至少有一种动物当时确曾存在过;但是,我仅能根据以下的假设来回答这最后的问题,即今日我们的海洋所延伸的地方,已经存在了一个极长久的期间,上下升降着的大陆在其今日存在之处,自寒武系开始以来就已经存在了;而远在寒武纪以前,这个世界呈现了完全不同的另一种景象;由更古地质层形成的古大陆,今日仅以变质状态的遗物而存在,或者还埋藏在海洋之下。
  如果克服了这等难点,<敏感詞>古生物学的主要重大事实便与根据变异和自然选择的生物由来学说十分一致。这样,我们就可以理解,新物种为什么是慢慢地、连续地产生的;为什么不同纲的物种不必一起发生变化,或者以同等速度、以同等程度发生变化,然而一切生物毕竟都发生了某种程度的变异。老类型的绝灭差不多是产生新类型的必然结果。我们能够理解为什么一个物种一旦消灭就永不再现。物种群在数目上的增加是缓慢的,它们的存续时期也各不相等;困为变异的过程必然是缓慢的,而且取决于许多复杂的偶然事件。属于优势大群的优势物种有留下许多变异了的后代的倾向,这些后代便形成新的亚群和群。当这等新群形成之后,势力较差的群的物种,由于从一个共同祖先那里遗传到低劣性质,便有全部绝灭、同时不在地面上留下变异了的后代的倾向。但是物种全群的完全绝灭常常是一个缓慢的过程,因为有少数后代会在被保护的和孤立的场所残存下来的。一个群如果一旦完全绝灭。就不再出现;因为世代的连锁已经断了。
  我们能够理解为什么分布广的和产生最大数目的变种的优势类型,有以近似的但变异了的后代分布于世界的倾向;这等后代一般都能够成功地压倒那些在生存斗争中较为低劣的群。因此,经过长久的间隔期间之后,世界上的生物便呈现出曾经同时发生变化的光景。
  我们能够理解,为什么古今的一切生物类型汇合起来只成为少数的几个大纲。我们能够理解,由于性状分歧的连续倾向,为什么类型愈古,它们一般与现存类型之间的差异便愈大;为什么古代的绝灭类型常有把现存物种之间的空隙填充起来的倾向,它们往往把先前被分作二个不同的群合而为一;但更普通的是只把它们稍微拉近一些。类型愈古,它们在某种程度上便愈加常常处于现在不同的群之间;因为类型愈古,它们与广为分歧之后的群的共同祖先愈接近,结果也愈加类似。绝灭类型很少直接介于现存类型之间;而仅是通过<敏感詞>不同的绝灭类型的长而迂曲的路,介于现存类型之间。我们能够明白知道,为什么密切连续的地质层的生物遗骸是密切近似的;因为它们被世代密切地连结在一起了。我们能够明白知道为什么中间地质层的生物遗骸具有中间性状。
  历史中各个连续时代内的世界生物,在生活竞争中打倒了它们的祖先,井在等级上相应地提高了,它们的构造一般也变得更加专业化;这可以说明很多古生物学者的普通信念——体制就整体来说是进步了。绝灭的古代动物在某种程度上都与同纲中更近代动物的胚胎相类似,按照我们的观点,这种可惊的事实便得到简单的解释。晚近地质时代中构成的同一模式在同一地域内的演替已不再是神秘的了,根据遗传原理,它是可以理解的。
  这样,如果地质纪录是像许多人所相信的那样不完全,而且,如果至少可以断定这纪录不能被证明更加完全,那么对于自然选择学说的主要异议就会大大减少或者消失。另一方面,我认为,一切古生物学的主要法则明白地宣告了,物种是由普通的生殖产生出来的:老类型被新而改进了的生物类型所代替,新而改进了的类型是“变异”和“最适者生存”的产物。
回复

使用道具 举报

28
 楼主| 发表于 2008-1-20 14:00:17 | 只看该作者
第十三章 地理分布(续前)
淡水生物的分布——论海洋岛上的生物——两栖类和陆栖哺乳类的不存在——岛屿生物与最近大陆上生物的关系——从最近原产地移来的生物及其以后的变化——前章和本章的提要。

  淡水生物

  因为湖泊和河流系统被陆地障碍物所隔开,所以大概会想到淡水生物在同一地区里不会分布很广,又因为海是更加难以克服的障碍物,所以大概会想到淡水生物不会扩张到遥远的地区。但是情形恰恰相反。不但属于不同纲的许多淡水物种有广大的分布,而且近似物种也以可惊的方式遍布于世界。当第一次在巴西各种淡水中采集生物时,我记得十分清楚,我对于那里的淡水昆虫、贝类等与不列颠的很相似而周围陆栖生物与不列颠的很不相似,感到非常惊奇。
  但是,关于淡水生物广为分布的能力,我想在大多数情形里可以做这样的解释:它们以一种高度对自己有用的方式变得适合于在它们自己的地区里从一池塘、从一河流到另一河流经常进行短距离的迁徙;从这种能力发展为广远的分布将是近乎必然的结果。我们在这里只能考虑少数几个例子;其中最不容易解释的是鱼类。  以前相信同一个淡水物种永远不能在两个彼此相距很远的大陆上存在。但是京特博士最近阐明,南乳鱼(Galaxias attenuatus)栖息在塔斯马尼亚、新西兰、福克兰岛和南美洲大陆。这是一个奇异的例子,它大概可以表示在从前的一个温暖时期里这种鱼从南极的中心向外分布的情形。可是由于这一属的物种也能用某种未知的方法渡过距离广远的大洋,所以京特的例子在某种程度也就不算稀奇了;例如,新西兰和奥克兰诸岛(Auckland Islands)相距约230英里,但两地都有一个共同的物种。在同一大陆上,淡水鱼常常分布很广,而且变化莫测;因为在两个相邻的河流系统里有些物种是相同的,有些却完全不相同。
  淡水鱼类大概由于所谓的意外方法而偶然地被输送出去。例如,鱼被旋风卷起落在遥远的地点还是活的,并不是很稀有的事;并且我们知道卵从水里取出来以后经过相当长的时间还保持它们的生活力。尽管如此,它们的分布主要还应归因于在最近时期里陆地水平的变化而使河流得以彼此流通的缘故。还有,河流彼此相流通的事也发生在洪水期中,这里却没有陆地水平的变化。大多数连续的山脉自古以来就必定完全阻碍两侧河流汇合在一起,两侧鱼类的大不相同,也导致了相同的结论。有些淡水鱼属于很古的类型,在这等情形下,对于巨大的地理变化就有充分的时间,因而也有充分的时间和方法进行大量的迁徙。再者,京特博士最近根据几种考察,推论出鱼类能够长久地保持同一的类型。如果对于咸水鱼类给予小心的处理,它们就能慢慢的习惯于淡水生活;按照法伦西奈(Valencicnnes)的意见,几乎没有一类鱼,其一切成员都只在淡水里生活,所以属于淡水群的海栖物种可以沿着海岸游得很远,并且变得再适应远地的淡水,大概也不甚困难。
  淡水贝类的某些物种分布很广,并且近似的物种也遍布全世界,根据我们的学说,从共同祖先传下的近似物种,一定是来自单一源流。它们的分布情况起初使我大惑不解,困为它们的卵不像是能由鸟类输送的;并且卵与成体一样,都会立刻被海水杀死。我甚而不能理解某些归化的物种怎样能够在同一地区里很快地分布开去。但是我所观察的两个事实——无疑<敏感詞>事实还会被发见——对于这一问题提供了一些说明。当鸭子从盖满浮萍(duckweed)的池塘突然走出时,我曾两次看到这些小植物附着在它们的背上;并且曾经发生过这样的事情:把一些浮萍从一个水族培养器移到另一个水族培养器里时,我曾无意中把一个水族培养器里的贝类移入到另一个。不过还有一种媒介物或者更有效力:我把一只鸭的脚挂在一个水族培养器里,其中有许多淡水贝类的卵正在孵化;我找到许多极端细小的、刚刚孵化的贝类爬在它的脚上,并且是如此牢固地附着在那里,以致脚离开水时,它们并不脱落,虽然它们再长大一些就会自己落下的。这些刚刚孵出的软体动物虽然在它们的本性上是水栖的,但它们在鸭脚上,在潮湿的空气中,能活到十二至二十小时;在这样长的一段时间里,鸭或鷺鸶(heron)至少可以飞行六百或七百英里;如果它们被风吹过海面到达一个海洋岛或<敏感詞>遥远的地点,必然会降落在一个池塘或小河里。莱尔爵士告诉我,他曾捉到一只龙虱(Dytiscus),有盾螺(Ancyius,一种像limpet的淡水贝牢固地附着在它的上面;并且同科的水甲虫细纹龙虱(Colymbetes),有一次飞到比格尔号船上,当时这只船距离最近的陆地是四十五英里:没有人能够说,它可以被顺风吹到多远。
  关于植物,早就知道很多淡水的、甚至沼泽的物种分布得非常之远,在大陆上并且在最遥远的海洋岛上,都是如此。按照得康多尔的意见,含有很少数水栖成员的陆栖植物的大群显著地表现了这种情形;因为它们似乎由于水栖,便立刻获得了广大的分布范围。我想,这一事实可以由有利的分布方法得到说明。我以前说过少量的泥土有时会附着在鸟类的脚上和喙上。涉禽类经常徘徊池塘的污泥边缘,它们如果突然受惊飞起,脚上大概极可能带着泥土。这一目的鸟比任何<敏感詞>目的鸟漫游更广;它们有时来到最遥远的和不毛的海洋岛上;它们大概不会降落在海面上,所以,它们脚上的任何泥土就不致被洗掉;当到达陆地之后,它们必然会飞到它们的天然的淡水栖息地。我不相信植物学者能体会到在池塘的泥里含有何等多的种籽;我曾经做过几个小试验,但是在这里只能举出一个最动人的例子:我在二月里从一个小池塘边的水下三个不同地点取出三调羹污泥,在干燥以后只有六又四分之三盎司重;我把它盖起来,在我的书房里放了六个月,当每一植株长出来时,把它拔出并加以计算;这些植物属于很多种类,共计有537株;而那块粘软的污泥在一个早餐杯里就可以盛下了!考虑到这等事实,我想,如果水鸟不把淡水植物的种籽输送到遥远地点的、没有生长植物的池塘和河流,倒是不能解释的事情了。这同样的媒介对于某些小型淡水动物的卵大概也会有作用的。
  <敏感詞>未知的媒介大概也发生过作用。我曾经说过淡水鱼类吃某些种类的种籽,虽然它们吞下许多别的种籽后再吐出来;甚至小的鱼也会吞下相当大的种籽、如黄睡莲和眼子菜属(Potamogeton)的种籽。鹭鸶和别的鸟,一个世纪又一个世纪地天天在吃鱼;吃了鱼之后,它们便飞起,并走到别的水中,或者被风吹过海面;并且我们知道在许多小时以后随着粪便排出的种籽,还保持着发芽的能力。以前当我看到那精致的莲花(Nelumbium)的大型种籽,又记得得康多尔关于这种植物分布的意见时,我想它的分布方法一定是不能理解的;但是奥杜旁说,他在鹭鸶的胃里找到过南方莲花(按照胡克博士的意见,大概是大型北美黄莲花[Neiumbium luteum])的种籽。这种鸟必然常常在胃里装满了食物以后又飞到远方的池塘,然后饱吃一顿鱼,类推的方法使我相信,它会把适于发芽状态的种籽在成团的粪中排出。
  当考察这几种分布方法时,应该记住,一个池塘或一条河流,例如,在一个隆起的小岛上最初形成时,其中是没有生物的;于是一粒单个的种籽或卵将会获得成功的良好机会。在同一池塘里的生物之间,不管生物种类怎样少,总有生存斗争,不过甚至充满生物的池塘的物种数目与生活在相同面积的陆地上的物种数目相比,前者总是少的,所以,它们之间的竞争比陆栖物种之间的竞争就较不剧烈;结果外来的水生生物的侵入者在取得新的位置上比陆上的移居者有较好的机会。我们还应记住,许多淡水生物在自然系统上是低级的,而且我们有理由相信,这样的生物比高等生物变异较慢;这就使水栖物种的迁徙有了时间。我们不应忘记,许多淡水类型从前大概曾经连续地分布在广大面积上,然后在中间地点绝灭了。但是淡水植物和低等动物,不论它们是否保持同一类型或在某种程度上变化了,其分布显然主要依靠动物,特别是依靠飞翔力强的、并且自然地从这一片水飞到另一片水的淡水鸟类把它们的种籽和卵广泛散布开去。

  论海洋岛上的生物

  不但同一物种的一切个体都是由某一地区迁徙出来的,而且现在栖息在最遥远地点的近似物种也都是由单一地区——即它们早期祖先的诞生地迁徙出来的,根据这一观点,我曾选出有关分布的最大困难的三类事实,现在对其中的最后一类事实加以讨论。我已经举出我的理由,说明我不相信在现存物种的期间内,大陆曾有过如此巨大规模的扩展,以致这儿个大洋中的一切岛屿都曾因此充满了现在的陆栖生物。这一观点消除了很多困难,但是与有关岛屿生物的一切事实不相符合。在下面的论述中,我将不限于讨论分布的问题,同时也要讨论到与独立创造学说和伴随着变异的生物由来学说之真实性有关的某些<敏感詞>情形。
  栖息在海洋岛上的一切类别的物种在数量上与同样大小的大陆面积的物种相比是稀少的:得康多尔在植物方面,沃拉斯顿在昆虫方面,都承认了这个事实。例如,有高峻山岳和多种多样地形的、而且南北达780英里的新西兰,加上外围诸岛奥克兰、坎贝尔(Campbell)和查塔姆(Chatham)一共也不过只有960种显花植物;如果我们把这种不大的数目,与繁生在澳洲西南部或好望角的同等面积上的物种相比较,我们必须承认有某种与不同物理条件无关的原因曾经引起了物种数目上的如此巨大差异。甚至条件一致的剑桥还具有847种植物,盎格尔西小岛具有764种,但是有若干蕨类植物和引进植物也包括在这些数目里,而且从<敏感詞>方面讲,这个比较也不十分恰当。我们有证据可以说阿森松(Ascension)这个不毛岛屿本来只有不到六种显花植物;可是现在有许多物种已在那里归化了,就像许多植物在新西兰和每一<敏感詞>可以举出的海洋岛上归化的情形一样。在圣海伦那(st.Helena),有理由相信归化的植物和动物已经几乎消灭了或者完全消灭了许多本地的生物。谁承认每一物种是分别创造的学说,就必须承认有足够大量数目的最适应的植物和动物并不是为海洋岛创造的;因为人类曾经无意识地使那些岛充满了生物,在这方面他们远比自然做得更加充分、更加完善。
  虽然海洋岛上的物种数目稀少,但是特有的种类(即在世界上<敏感詞>地方找不到的种类)的比例经常是极其大的。例如,如果我们把马德拉岛上特有陆栖贝类,或加拉帕戈斯群岛上的特有鸟类的数目与任何大陆上找到的它们的数目加以比较,然后把这等岛屿的面积与大陆的面积加以比较,我们将会看到这是真实的。这种事实在理论上是可以料想到的,因为,正如已经说明过的,物种经过长久的间隔期间以后偶然到达一个新的隔离地区,势必与新的同住者进行竞争,极容易发生变异,并会常常产生出成群的变异了的后代。可是决不能固为一个岛上的一纲的物种几乎是特殊的,就认为<敏感詞>纲的一切物种或同纲的<敏感詞>部分的物种也必然是特殊的;这种不同,似乎一部分由于没有变化的物种曾经集体地移入,所以它们彼此的相互关系没有受到多大扰乱;一部分由于没有变化过的物种经常从原产地移入,岛上的生物与它们进行了杂交。应该记住,这样杂交后代的活力一定会增强;所以甚至一个偶然的杂交也会产生比预料更大的效果。我愿举几个例子来说明上述论点:在加拉帕戈斯群岛上有26种陆栖鸟;其中有21(或者23)种是特殊的,而在11种海鸟里只有两种是特殊的;显然,海鸟比陆栖鸟能够更加容易地、更加经常地到达这些岛上。另一方面,百慕大(Bermuda)和北美洲的距离,就像加拉帕戈斯群岛和南美洲的距离几乎一样,而且百慕大有一种很特殊的土壤,但它并没有一种特有的陆息鸟;我们从琼斯先生(Mr.J.M.Jones)写的有关百慕大的可称赞的报告中知道,有很多北美洲的鸟类偶然地或者甚至经常地来到这个岛上。据哈考特先生(Mr.E.V.Harcourt)告诉我,几乎每年都有很多欧洲的和非洲的鸟类被风吹到马德拉;这个岛屿有99种鸟栖息着,其中只有一种是特殊的,虽然它与欧洲的一个类型有密切的关系;三个或四个<敏感詞>物种只见于这一岛屿和加那利群岛。所以,百慕大的和马德拉的诸岛充满了从邻近大陆来的鸟,那些鸟长久年代以来曾在那里进行了斗争,并且变得相互适应了。因此,定居在新的家乡以后,每一种类将被<敏感詞>种类维持在它的适宜地点上和习性中,结果就不容易发生变化。任何变异的倾向,还会由于与常从原产地来的没有变异过的移入者进行杂交而受到抑制。再者,马德拉栖息着惊人数量的特殊陆栖贝类,但没有一种海栖贝类是这里的海洋所特有的:现在,虽然我们不知道海栖贝类是怎样分布的,可是我们能够知道它们的卵或幼虫,附着在海藻或漂浮的木材上或涉禽类的脚上,就能输送过三、四百英里的海洋,在这一方面它们要比陆栖贝类容易得多。栖息在马德拉的不同目的昆虫表现了差不多平行的情形。海洋岛有时缺少某些整个纲的动物,它们的位置被<敏感詞>纲所占据;这样,爬行类在加拉帕戈斯群岛,巨大的无翼鸟在新西兰,便占有了或最近占有了哺乳类的位置。虽然新西兰在这里是被当做海洋岛论述的,但是它是否应该这样划分,在某种程度上还是可疑的;它的面积很大,并且没有极深的海把它和澳洲分开;根据它的地质的特性和山脉的方向,克拉克牧师最近主张,应该把这个岛以及新喀里多尼亚(New Caledonia)视为澳洲的附属地。讲到植物,胡克博士曾经阐明,在加拉帕戈斯群岛不同目的比例数,与它们在<敏感詞>地方的比例数很不相同。所有这些数量上的差异以及某些动物和植物的整个群的缺乏,一般都是用岛上的物理条件的假想差异来解释的;但是这种解释很值得怀疑。移入的便利与否似乎与条件的性质有同等的重要性。
  关于海洋岛的生物,还有许多可注意的小事情。例如,在没有一只哺乳动物栖息的某些岛上,有些本地的特有植物具有美妙的带钩种籽;可是,钩的用途在于把种籽由四足兽的毛或毛皮带走,没有比这种关系更加明显的了。但是带钩的种籽大概可以由<敏感詞>方法被带到一个岛上去;于是,那种植物经过变异,就成为本地的特有物种了,它仍然保持它的钩,这钩便成为一种无用的附属物,就像许多岛上的昆虫,在它们愈合的翅鞘下仍有绉缩的翅。再者,岛上经常生有树木或灌木,它们所属的目在<敏感詞>地方只包括草本物种;而树木,依照得康多尔所阐明的,不管原因怎样,一般分布的范围是有限的。因此,树木极少可能到达遥远的海洋岛;草本植物没有机会能够与生长在大陆上的许多充分发展的树木胜利地进行竞争,因而草本植物一旦定居在岛上,就会由于生长得愈来愈高,并高出<敏感詞>草本植物商占有优势。在这种情形下,不管植物属于哪一目,自然选择就有增加它的高度的倾向,这样就使它先变成灌木,然后变成乔木。

  两栖类和陆栖哺乳类不见于海洋岛上

  关于海洋岛上没有整目的动物的事,圣樊尚很久以前就曾说过,大洋上点缀着许多岛屿,但从未发现有两栖类(蛙、蟾蜍、蝾螈)。我曾煞费苦心地企图证实这种说法,发见除了新西兰、新喀里多尼亚、安达曼(Andaman Island)诸岛,或者还有所罗门(Salomon)和塞舌尔(Seychelles)诸岛以外,这种说法是对的。但是我曾经说过新西兰和新喀里多尼亚是否应该被列为海洋岛,还可怀疑;至于安达曼、所罗门诸岛以及塞舌尔是否应该列为海洋岛,就更值得怀疑了。那么多的真正海洋岛上一般都没有蛙、蟾蜍和蝾螈,是不能用海洋岛的物理条件来解释的;诚然,岛屿似乎特别适于这类动物:甲为蛙曾经被带进马德拉、亚速尔和毛里求斯去,它们在那里大量繁生,以致成为可厌之物。但是因为这类动物和它们的卵遇到海水就立刻死亡(据我们所知道的,有一个印度的物种是例外),它们很难输送过海,疥以我们可以知道它们为什么不存在于真正的海洋岛上。但是,它们为什么不在那里被创造出来,按照特创论就很难解释了。
  哺乳类提供了另一种相似的情形。我曾仔细地寻找最古老的航海纪录,并没有找到过一个毫无疑问的事例可以表示陆栖哺乳类(土人饲养的家畜除外)栖息在离开大陆或大的陆岛300英里以外的岛屿上;在许多离开大陆更近的岛屿上也同样没有。福克兰群岛有一种似狼的狐狸,极像是一种例外;但是这群岛屿不能看作是海洋岛,因为它位于与大陆相连的沙洲上,其距离约280英里;还有,冰山以前曾把漂石带到它的西海岸,它们以前也可能把狐狸带过去,这在北极地区是经常有的事。可是并不能说,小岛不能养活至少是小的哺乳类,因为它们在世界上许多地方生活在靠近大陆的小岛上;并且几乎不能举出一个岛,我们的小型四足兽不能在那里归化并大大地繁生。按照特创论的一般观点,不能说那里没有足够的时间来创造哺乳类;许多火山岛是十分古老的,从它们遭受过的巨大陵蚀作用以及从它们第三纪的地层可以看出:那里还有足够的时间来产生出本地所特有的、属于<敏感詞>纲的物种;我们知道,哺乳动物的新物种在大陆上比<敏感詞>低于它们的动物以较快的速率产生出来和消灭掉。虽然陆栖哺乳类不见于海洋岛,空中哺乳类却几乎在每一岛上都有。新西兰有两种在世界<敏感詞>地方找不到的蝙蝠:诺福克岛(Norfolk Island)、维提群岛(Viti)、小笠原群岛(Bonin)、加罗林和马利亚纳群岛(Marianne)、毛里求斯,都首它们的特产蝙蝠。可以质问:为什么那假定的创造力在遥远的岛上产生出蝙蝠而不产生出<敏感詞>哺乳类呢?根据我的观点这个问题是容易解答的;因为没有陆栖动物能够渡过海洋的广阔空间,但是蝙蝠却能飞过去。人们曾经看到蝙蝠在白天远远地在大西洋上飞翔;并且有两个北美洲的蝙蝠或者经常地或者偶然地飞到离开大陆600英里的百慕大。我从专门研究这一科动物的汤姆斯先生(Mr.Tomes)那里听到,这一科的许多物种具有广大的分布范围,并且可以在大陆上和遥远的岛上找到它们。因此,我们只要设想这类漫游的物种在它们的新家乡由于它们的新位置而发生变异就可以了,并且我们由此就能理解,为什么海洋岛上虽有本地的特有蝙蝠,却没有一切<敏感詞>陆栖哺乳类。
  还有一种有趣的关系,就是把岛屿彼此分开或把岛屿与最近大陆分开的海水深度和它们哺乳类亲缘关系的程度之间有一定的关系。埃尔先生(Mr.Windsor Earl)对这个问题做过一些动人的观察,以后又被华莱斯先生在大马来群岛所做的可称赞的研究大大扩展了,马来群岛以一条深海的空间与西里伯斯(Celebes)相邻,这条深海分隔出两个十分不同的哺乳类世界。在这些岛的任何一边的海都是相当浅的,这些岛有相同的或密切近似的四足兽栖息着。我还没有时间来研究这个问题在世界一切地方的情形;但是据我研究所及,这种关系是正确的。例如,不列颠和欧洲被一条浅海隔开,两方面的哺乳类是相同的;靠近澳洲海岸的一切岛屿情形也是这样。另一方面,西印度诸岛位于很深的沙洲上,其深度几达1,000英寻,在那里我们找到美洲的类型,但是物种甚至属却十分不同。因为一切种类的动物所发生的变化量一部分取决于时间的长短,又因为由浅海隔离的或与大陆隔离的岛屿比由深海隔离的岛屿更有可能在近代联成一片,所以我们能够理解,在隔离两个哺乳类动物群的海水深度和它们的亲缘关系的程度之间存在着怎样的关系——这种关系根据独立创造的学说是十分讲不通的。
  以上是关于海洋岛生物的叙述——即,物种数目稀少,本地的特有类型占有多数——某些群的成员发生变化,而同一纲的<敏感詞>群的成员并不发生变化一某些目,如两栖类和陆栖哺乳类,全部缺如,虽然能飞的蝙蝠是存在的一某些植物目表现特别的比例——草本类型发展成乔木,等等——对这些问题的解释有两种信念,一是认为在悠久过程中偶然输送的方法是有效的,另一认为一切海洋岛以前曾和最近大陆联结在一起,在我看来,前者比后者更加符合实际情况。因为按照后一观点,大概不同的纲会更一致的移入,同时因为物种是集体地移入的,它们的相互关系就不会受大的扰乱,结果它们或者都不发生变化,或者一切物种以比较相同的方式发生变化。比较遥远岛屿上的生物(或者仍旧保持同一物种的类型或者以后发生变化)究竟有多少曾经到达它们现在的家乡,对这一问题的理解,我不否认是存在许多严重难点的。但是,决不能忽视,<敏感詞>岛屿曾经一度作为歇脚点,而现在可能没有留下一点遗迹,我愿详细说明一个困难的例子。几乎一切海洋岛,甚至是最孤立的和最小的海洋岛,都有陆栖贝类栖息着,它们一般是本地特有的物种,但有时是<敏感詞>地方也有的物种——在这方面古尔德博士曾举出一个太平洋的动人例子。众所周知,陆栖贝类容易被海水杀死;它们的卵,至少是我试验过的卵,在海水里下沉并且被杀死了。可是一定还有某些未知的偶然有效的方法来输送它们。刚孵化的幼体会不会有时附着于栖息在地上的鸟的脚上而固此被输送过去呢?我想起休眠时期中贝壳口上具有薄膜的陆栖贝类,在漂游木材的隙缝中可以浮过相当阔的海湾。并且我发见有几个物种在这种状态下沉没在海水里七天而不受损害:一种罗马蜗牛(Helixpomatia)经过这样处理以后,在休眠中再放人海水中二十天,能够完全复活。在这样长的时期里,这种贝类大概可被平均速度的海流带到660地理英里的远处。因为这种罗马蜗牛具有一片厚的石灰质厣(operculum),我把厣除去,等到新的膜形成以后,我再把它浸入海水里十四天,它还是复活了,并且爬走了。奥甲必登男爵(Baron Aucapitaine)以后做过相似的试验:他把属于十个物种的100个陆栖贝,放在穿着许多小孔的箱子里,把箱子放在海里十四天。在一百个贝类中,有二十七个复活了。厣的存在似乎是重要的,因为在具有厣的十二个圆口螺(Cyclostoma elegans)中,有十一个生存着。值得注意的是:我所试验的那种罗马蜗牛非常善于抵抗海水,而奥甲必登所试验的<敏感詞>四个罗马蜗牛的物种,在五十四个标本中没有一个可以复活。但是,陆栖贝类的输送决不可能完全依靠这种方法;鸟类的脚提供了一个更可能的方法。
回复

使用道具 举报

29
 楼主| 发表于 2008-1-20 14:00:53 | 只看该作者
岛屿生物与最近大陆上生物的关系

  对我们来说最动人的和最重要的事实是,栖息在岛上的物种与最近大陆的并不实际相同的物种有亲缘关系。关于这一点能够举出无数的例子来。位于赤道下的加拉帕戈斯群岛距离南美洲的海岸有500到600英里之远。在那里几乎每一陆上的和水里的生物都带着明确的美洲大陆的印记。那里有二十六种陆栖鸟;其中有二十一种或者二十三种被列为不同的物种,而且普通部假定它们是在那里创造出来的;可是这些鸟的大多数与美洲物种的密切亲缘关系,表现在每一性状上,如表现在它们的习性、姿势和鸣声上。<敏感詞>动物也是如此,胡克博士在他所著的该群岛的可称赞的植物志中,大部分植物也是这样。博物学者们在离开大陆几百英里远的这些太平洋火山岛上观察生物时,就会感到自己是站在美洲大陆上似的。情形为什么会这样呢?为什么假定在加拉帕戈斯群岛创造出来的而不是在<敏感詞>地方创造出来的物种这样清楚地和在美洲创造出来的物种有亲缘关系呢?在生活条件方面,在岛上的地质性质方面,在岛的高度或气候方面,或者在共同居住的几个纲的比例方面,没有一件是与南美洲沿岸的诸条件密切相似的:事实上,在一切这些方面都是有相当大的区别的。另一方面,加拉帕戈斯群岛和佛得角群岛,在土壤的火山性质、气候、高度和岛的大小方面,则有相当程度的类似:但是它们的生物却是何等完全地和绝对地不同呀!佛得角群岛的生物与非洲的生物相关联,就像加拉帕戈斯群岛的生物与美洲的生物相关联一样。对于这类的事实,根据独立创造的一般观点,是得不到任何解释的;相反地,根据本书所主张的观点,显然地,加拉帕戈斯群岛很可能接受从美洲来的移住者,不管这是由于偶然的输送方法或者由于以前连续的陆地(虽然我不相信这个理论)。而且佛得角群岛也接受从非洲来的移住者;这样的移住者虽然容易地发生变异——而遗传的原理依然泄露了它们的原产地在于何处。
  能够举出许多类似的事实:岛上的特有生物与最近大陆上或者最近大岛上的生物相关联,实在是一个近乎普遍的规律。例外是少数的,并且大部分的例外是可以解释的。这样,虽然克格伦陆地距离非洲比距离美洲近些,但是我们从胡克博士的报告里可以知道,它的植物却与美洲的植物相关联,并且关联得很密切:但是根据岛上植物主要是借着定期海流漂来的冰山把种籽连着泥土和石块一起带来的观点看来,这种例外就可以解释了。新西兰在本地特有植物上与最近的大陆澳洲之间的关联比起它与<敏感詞>地区之间的关联更加密切:这大概是可以料想得到的,但是它又清楚地与南美洲相关联,南美洲虽说是第二个最近的大陆,可是离开得那么遥远,所以这事实就成为例外了。但是根据下述观点看来,这个难点就部分地消失了,那就是:新西兰、南美洲和<敏感詞>南方陆地的一部分生物是从一个近乎中间的虽然遥远的地点即南极诸岛而来的,那是在比较温暖的第三纪和最后的冰期开始以前面南极诸岛长满了植物的时候。澳洲西南角和好望角的植物群的亲缘关系虽然是薄弱的,但是胡克博士使我确信这种亲缘关系是真实的,这是更加值得注意的情形;但是这种亲缘关系只限于植物,并且毫无疑问,将来会得到解释。
  决定岛屿生物和最近大陆生物之间的亲缘关系的同样法则,有时可以小规模地但以有趣的方式在同一群岛的范围内表现出来。例如,在加拉帕戈斯群岛的每一分离的岛上都有许多不同的物种栖息着,这是很奇特的事实;但是这些物种彼此之间的关联比它们与美洲大陆的生物或与世界<敏感詞>地区的生物之间的关联更加密切。这大概是可以料想到的,因为彼此这样接近的岛屿几乎必然地会从同一根源接受移住者,也彼此接受移住者。但是许多移住者在彼此相望的、具有同一地质性质、同一高度、气候等的诸岛上怎么会发生不同的(虽然差别不大)变异呢?长久以来这对我是个难点:但是这主要是由于认为一地区的物理条件是最重要的这一根深柢固的错误观点而起的;然而,不能反驳的是,各个物种必须与<敏感詞>物种进行竞争,因而<敏感詞>物种的性质至少也是同样重要的,并且一般是更加重要的成功要素。现在,如果我们观察栖息在加拉帕戈斯群岛同时也见于世界<敏感詞>地方的物种,我们可以发见它们在若干岛上有相当大的差异。如果岛屿生物曾由偶然的输送方法而来——比方说,一种植物的种籽曾经被带到一个岛上,另一种植物的种籽曾经被带到另一个岛上,虽然一切种籽都是从同一根源而来的;那么上述的差异的确是可以预料到的。因此,一种移住者在以前时期内最初在诸岛中的一个岛上定居下来时,或者它以后从一个岛散布到另一个岛上时,它无疑会遭遇到不同岛上的不同条件,因为它势必要与一批不同的生物进行竞争;比方说,一种植物在不同的岛上会遇到最适于它的土地已被多少不同的物种所占据,并且还会受到多少不同的敌人的打击。如果在那个时候这物种变异了,自然选择大概就会在不同岛上引起不同变种的产生。尽管如此,有些物种还会散布开去并且在整个群中保持同一的性状,正如我们看到在一个大陆上广泛散布的物种保持着同一性状一样。
  在加拉岶戈斯群岛的这种情形里以及在程度较差的某些类似的情形里,真正奇异的事实是,每一个新物种在任何一个岛上一旦形成以后,并不迅速地散布到<敏感詞>岛上。但是,这些岛,虽然彼此相望,却被很深的海湾分开,在大多数情形里比不列颠海峡还要宽,并且没有理由去设想它们在任何以前的时期是连续地连结在一起的。在诸岛之间海流是迅速的和急激的,大风异常稀少;所以诸岛彼此的分离远比地图上所表现的更加明显。虽然如此,有些物种以及在世界<敏感詞>部分可以找到的和只见于这群岛的一些物种,是若干岛屿所共有的;我们根据它们现在分布的状态可以推想,它们是从一个岛上散布到<敏感詞>岛上去的。但是,我想,我们往往对于密切近似物种在自由往来时,便有彼此侵占对方领土的可能性,采取了错误的观点。毫无疑问,如果一个物种比<敏感詞>物种占有任何优势,它就会在很短的时间内全部地或局部地把它排挤掉;但是如果两者能同样好地适应它们的位置,那么两者大概都会保持它们各自的位置到几乎任何长的时间。经过人的媒介而归化的许多物种曾经以惊人的速度在广大地区里进行散布,熟悉了这种事实,我们就会容易推想大多数物种也是这样散布的;但是我们应该记住,在新地区归化的物种与本地生物一般并不是密切近似的,而是很不相同的类型,如得康多尔所阐明的,在大多数情形下是属于不同的属的。在加拉帕戈斯群岛,甚至许多鸟类,虽然那么适于从一个岛飞到另一个岛,但在不同的岛上还是不相同的;例如,效舌鸫(mocking-thrush)有三个密切近似的物种,每一个物种只局限于自己的岛上。现在,让我们设想查塔姆岛的效舌鸫被风吹到查理士岛(Charles),而后者已有另一种效舌鸫:为什么它应该成功地定居在那里呢、我们可以稳妥地推论,查理士岛已经繁生着自己的物种,因为每年有比能够养育的更多的蛋产生下来和更多的幼鸟孵化出来;并且我们还可以推论,查理士岛所特有的效舌鸫对于自己家乡的良好适应有如查塔姆岛所特有的物种一样。莱尔爵士和沃拉斯顿先生曾经写信告诉我一个与本问题有关的可注意的事实;即马德拉和附近的圣港(Porto Santo)小岛具有许多不同的而表现为代表物种的陆栖贝类,其中有些是生活在石缝里的;虽然有大量为石块每年从圣港输送到马德拉,可是马德拉并没有圣港的物种移住进来;虽然如此,两方面的岛上都有欧洲的陆栖贝类栖息着,这些贝类无疑比本地物种占有某些优势。根据这些考察,我想,我们对于加拉帕戈斯群岛的若干岛上所特有的物种并没有从一个岛上散布到<敏感詞>岛上的事,就不必大惊小怪了。再者,在同一大陆上,“先行占据”对于阻止在相同物理条件下栖息的不同地区的物种混入,大概有重要的作用。例如,澳洲的东南部和西南部具有几乎相同的物理条件,并且由一片连续的陆地联络着,可是它们有巨大数量的不同哺乳类,不同鸟类和植物栖息着;据贝茨先生说,栖息在巨大的、开阔的、连续的亚马逊谷地的蝴蝶和<敏感詞>动物的情形也是这样。
  支配海洋岛生物的一般特性的这同一原理,即移住者与它们最容易迁出的原产地的关系,以及它们以后的变异,在整个自然界中有着广泛的应用。我们在每一山顶上、每一个湖泊和沼泽里都可看到这个原理,因为高山物种,除非同一物种在冰期已经广泛散布,都与周围低地的物种是相关联的;这样,南美洲的高山蜂鸟(humming-birds)、高山啮齿类、高山植物等,一切都严格地属于美洲的类型;而且显然地,当一座山缓慢隆起时,生物便会从周围的低地移来。湖泊和沼泽的生物也是这样,除非极方便的输送允许同一类型散布到世界的大部分。从美洲和欧洲洞穴里的大多数盲目动物的性状也可看到这同一原理。还能举出<敏感詞>类似的事实。我相信,以下情形将被认为是普遍正确的,即在任何两个地区,不问彼此距离多少远,凡有许多密切近似的或代表的物种存在,在那里便一定也有某些相同的物种;并且不管在什么地方,凡有许多密切近似的物种,在那里也必定有被某些博物学者列为不同物种而被<敏感詞>博物学者仅仅列为变种的许多类型;这些可疑的类型向我们示明了变异过程中的步骤。
  某些物种在现在或以前时期中的迁徒能力和迁徙范围,与密切近似物种在世界遥远地点的存在有一定的关系,这种关系还可用另一种更加普通的方式表示出来。古尔德先生很久以前告诉我,在世界各处散布的那些鸟属中,许多物种分布范围是广阔的。我不能怀疑这条规律是普遍正确的,虽然它很难被证明。在哺乳类中,我们看见这条规律显著地表现在蝙蝠中,并以较小的程度表现在猫科和狗科里。同样的规律也表现在蝴蝶和甲虫的分布上。淡水生物的大多数,也是这样,因为在最不同的纲里有许多属分布在世界各处,而且它们的许多物种具有广大的分布范围。这并不是说在分布很广的属里一切物种都有很广阔的分布范围,而是说其中某些物种有很广阔的分布范围。这也不是说在这样的属里物种平均有很广阔的分布范围;因为这大部分要看变化过程进行的程度;比方说,同一物种的两个变种栖息在美洲和欧洲,因此这个物种就有很广的分布范围;但是,如果变异进行得更远一些,那两个变种就会被列为不同的物种,因而它们的分布范围就大大地缩小了。这更不是说能越过障碍物而分布广远的物种,如某些善飞的鸟类,就必然分布得很广,因为我们永远不要忘记,分布广远不仅意味着具有越过障碍物的能力,而且意味着具有在遥远地区与异地同住者进行生存斗争并获得胜利的这种更加重要的能力。但是按照以下的观点——一属的一切物种,虽然分布到世界最遥远的地点,都是从单一祖先传下来的;我们就应该找到,并且我相信我们确能照例找到,至少某些物种是分布得很广远的。
  我们应该记住,在一切纲里许多属的起源都是很古的,在这种情形下,物种将有大量的时间可供散布和此后的变异。从地质的证据看来,也有理由相信,在每一个大的纲里比较低等的生物的变化速率,比起比较高等的生物的变化速率更加缓慢;结果前者就会分布广远而仍然保持同一物种性状的较好机会。这个事实以及大多数低级体制类型的种籽和卵都很细小并且较适于远地输送的事实,大概说明了一个法则,即任何群的生物愈低级,分布得愈广远;这是一个早经观察到的、并且最近又经得康多尔在植物方面讨论过的法则。
  刚刚讨论过的关系——即低等生物比高等生物的分布更加广远——分布广远的属,它的某些物种的分布也是广远的,——高山的、湖泊的和沼泽的生物一般与栖息在周围低地和干地的生物有关联,——岛上和最近大陆上的生物之间有显著关系,——在同一群岛中诸岛上的不同生物有更加密切的亲缘关系,——根据各个物种独立创造的普通观点,这些事实都是得不到解释的,但是如果我们承认从最近的或最便利的原产地的移居以及移居者以后对于它们的新家乡的适应,这就可以得到解释。

  前章和本章提要

  在这两章里我曾竭力阐明,如果我们适当地估计到我们对于在近代必然发生过的气候变化和陆地水平变化以及可能发生过的<敏感詞>变化所产生的充分影响是无知的,——如果我们记得我们对于许多奇妙的偶然输送方法是何等无知——如果我们记得,而且这是很重要的一点,一个物种在广大面积上连续地分布,而后在中间地带绝灭了,是何等常常发生的事情,——那么,相信同一物种的一切个体,不管它们是在哪里发现的,都传自共同的祖先,就没有不可克服的困难了。我们根据各种一般的论点,特别是根据各种障碍物的重要性,并且根据亚属、属和科的相类似的分布,得出上述结论,许多博物学者在单一创造中心的名称下也得出这一结论。
  至于同一属的不同物种,按照我们的学说,都是从一个原产地散布出去的;如果我们像上述那样地估计到我们的无知,并且记得某些生物类型变化得很缓慢,因而有大量时间可供它们迁徙,那么难点决不是不能克服的;虽然在这种情形下,就像在同一物种的个体的情形下一样,难点往往是很大的。为了说明气候变化对于分布的影响,我曾经试图阐明最后的一次冰期曾经发生过多么重要的作用,它甚至影响到赤道地区,并且它在北方和南方寒冷交替的过程中让相对两半球的生物互相混合,而且把一些生物留在世界的所有部分的山顶上。为了说明偶然的输送方法是何等各式各样,我曾经略为详细地讨论了淡水生物的散布方法。
  如果承认同一物种的一切个体以及同一属的若干物种在时间的悠久过程中曾经从同一原产地出发,并没有不可克服的难点;那么一切地理分布的主要事实,都可以依据迁徙的理论,以及此后新类型的变异和繁生,得到解释。这样,我们便能理解,障碍物,不问水陆,不仅在分开而且在显然形成若干动物区域和植物区域上,是有高度重要作用的。这样,我们还能理解同一地区内近似动物的集中化,比方说在南美洲,平原和山上的生物,森林、沼泽和沙漠的生物,如何以奇妙的方式彼此相关联,并且同样地与过去栖息在同一大陆上的绝灭生物相关联。如果记住生物与生物之间的相互关系是最高度重要的,我们就能知道为什么具有几乎相同的物理条件的两个地区常常栖息着很不相同的生物类型;因为根据移住者进入一个或两个地区以来所经过的时间长度;根据交通性质所容许的某些类型而不是<敏感詞>类型以或多或少的数量迁入;根据那些移入的生物是否波此以及与本地生物进行或多或少的直接竞争:并且根据移人的生物发生变异的快慢,所以在两个地区或更多的地区里就会发生与它们的物理条件无关的无限多样性的生活条件,——根据这种种情况,那里就会有一个几乎无限量的有机的作用和反作用,——并且我们就会发见某些群的生物大大地变异了,某些群的生物只是轻微地变异了,——某些群的生物大量发展了,某些群的生物仅以微小的数量存在着,——我们的确可以在世界上几个大的地理区里看到这种情形。、
  依据这些同样的原理,如我曾经竭力阐明的,我们便能理解,为什么海洋岛只有少数生物,而这些生物中有一大部分又是本地所特有的,即特殊的;由于与迁徙方法的关系,为什么一群生物的一切物种都是特殊的,而另一群生物、甚至同纲生物的一切物种都与邻近地区的物种相同。我们能够知道,为什么整个群的生物,如两栖类和陆栖哺乳类,不存在于海洋岛上。同时最孤立的岛也有它们自己特有的空中哺乳类即蝙蝠的物种。我们还能够知道,为什么在岛上存在的或多或少经过变异的哺乳类和这些岛与大陆之间的海洋深度有某种关系。我们能够清楚地知道,为什么一个群岛的一切生物,虽然在若干小岛上具有不同的物种,然而彼此有密切的关系;并且和最近大陆或移住者发源的<敏感詞>原产地的生物同样地有关系,不过关系较不密切。我们更能知道,两个地区内,不论相距多么远,如果有很密切近似的或代表的物种存在,为什么在那里总可以找到相同的物种。
  正如已故的福布斯所经常主张的,生命法则在时间和空间中有一种显著的平行现象;支配生物类型在过去时期内演替的法则与支配生物类型在今日不同地区内的差异的法则,几乎是相同的。在许多事实中我们可以看到这种情形。在时间上每一物种和每一群物种的存在都是连续的;因为对这一规律的显然例外是这么少,以致这些例外可以正当地归因于我们还没有在某一中间的沉积物里发现某些类型,这些类型不见于这种沉积物之中,却见于它的上部和下部:在空间,也是这样的,即,一般规律肯定是,一个物种或一群物种所栖息的地区是连续的,而例外的情形虽然不少,如我曾经企图阐明的,都可以根据以前在不同情况下的迁徒、或者根据偶然的输送方法、或者根据物种在中间地带的绝灭而得到解释。在时间和在空间里,物种以及物种群都有它们发展的最高点。生存在同一时期中的或者生存在同一地区中的物种群,常常有共同的微细特征,如刻纹或颜色。当我们观察过去悠久的连续时代时,正如观察整个世界的遥远地区,我们发现某些纲的物种彼此之间的差异很小,而另一纲的、或者只是同一日的不同组的物种彼此之间的差异却很大。在时间和在空间里,每一纲的低级体制的成员比高级体制的成员一般变化较少;但是在这两种情形里,对于这条规律都有显著的例外。按照我们的学说,在时间和在空间里的这些关系是可以理解的;因为不论我们观察在连续时代中发生变化的近缘生物类型或者观察迁入遥远地方以后曾经发生变化的近缘生物类型,在这两种情形里,它们都被普通世代的同一个纽带连结起来;在这两种情形里,变异法则都是一样的,而且变异都是由同一个自然选择的方法累积起来的。
回复

使用道具 举报

30
 楼主| 发表于 2008-1-20 14:03:46 | 只看该作者
第十四章 生物的相互亲缘关系:
形态学、胚胎学、残迹器官
  分类,群下有群——自然系统——分类中的规则和难点,依据伴随着变异的生物由来学说来解释——变种的分类——生物系统常用于分类——同功的或适应的性状——一般的,复杂的,放射状的亲缘关系——绝灭把生物群分开并决定它们的界限——同纲中诸成员之间的形态学,同一个体各部分之间的形态学——胚胎学的法则,依据不在幼小年龄发生的、而在相应年龄遗传的变异来解释——残迹器官;它们的起源的解释——提要。

  分类

  从世界历史最古远的时代起,已经发现生物彼此相似的程度逐渐递减,所以它们可以在群下再分成群。这种分类并不像在星座中进行星体分类那样的随意。如果说某一群完全适于栖息在陆地上,而另一群完全适于栖息在水里,一群完全适于吃肉而另一群完全适于吃植物性物质,等等。那么群的存在就太简单了;但是事实与此却大不相同,因为大家都知道,甚至同一亚群里的成员也具有不同的习性,这一现象是何等地普遍。在第二和第四章讨论“变异”和“自然选择”时,我曾企图阐明,在每一地区里,变异最多的,是分布广的、散布大的、普通的物种,即优势物种。由此产生的变种即初期的物种最后可以转化成新而不同的物种;并且这些物种,依据遗传的原理,有产生<敏感詞>新的优势物种的倾向。结果,现在的大群,一般含有许多优势物种,还有继续增大的倾向。我还企图进一步阐明,由于每一物种的变化着的后代都尝试在自然组成中占据尽可能多和尽可能不同的位置,它们就永远有性状分歧的倾向。试观在任何小地区内类型繁多,竞争剧烈,以及有关归化的某些事实,便可知道性状的分歧是有根据的。
  我还曾企图阐明,在数量上增加着的、在性状上分歧着的类型有一种坚定的倾向来排挤并且消灭先前的、分歧较少和改进较少的类型。请读者参阅以前解释过的用来说明这几个原理之作用的图解;便可看到无可避免的结果是,来自一个祖先的变异了的后代在群下又分裂成群。在图解里,顶线上每一字母代表一个包括几个物种的属;并且这条顶线上的所有的属共同形成一个纲,因为一切都是从同一个古代祖先传下来的,所以它们遗传了一些共同的东西。但是,依据这同一原理,左边的三个属有很多共同之点,形成一个亚科,与右边相邻的两个属所形成的亚科不同,它们是在系统为第五个阶段从一个共同祖先分歧出来的。这五个属仍然有许多共同点,虽然比在两个亚科中的共同点少些;它们组成一个科,与更右边、更早时期分歧出来的那三个属所形成的科不同。一切这些属都是从(A)传下来的,组成一个目,与从(1)传下来的属不同。所以在这里我们有从一个祖先传下来的许多物种组成了属;属组成了亚科,科和目,这一切都归入同一个大纲里。生物在群下又分成群的自然从属关系这个伟大事实(这由于看惯了,并没有经常引起我们足够的注意),依我看来,是可以这样解释的。毫无疑问,生物像一切<敏感詞>物体一样可以用许多方法来分类,或者依据单一性状而人为地分类,或者依据许多性状而比较自然地分类,例如,我们知道矿物和元素的物质是可以这样安排的。在这种情形下,当然没有族系连续的关系,现在也不能看出它们被这样分类的原因。但是关于生物,情形就有所不同,而上述观点是与群下有群的自然排列相一致的;直到现在还没有提出过<敏感詞>解释。
  我们看到,博物学者试图依据所谓的“自然系统”来排列每一纲内的物种、属和科。但是这个系统的意义是什么呢?有些作者认为它只是这样一种方案:把最相似的生物排列在一起,把最不相似的生物分开;或者认为它是尽可能简要地表明一般命题的人为方法——就是说,用一句话来描述例如一切哺乳类所共有的性状,用另一句话来描述一切食肉类所共有的性状,再用另一句话来描述狗属所共有的性状,然后再加一句话来全面地描述每一种类的狗。这个系统的巧妙和效用是不容置疑的。但是许多博物学者考虑“自然系统”的含义要比这更丰富些:他们相信它揭露了“造物主”的计划;但是关于“造物主”的计划,除非能够详细说明它在时间上或空间上的次序或这两方面的次序,或者详细说明它还有<敏感詞>什么意义,否则,依我看来,我们的知识并没有因此得到任何补益。像林奈所提出的那句名言,我们常看到它以一种多少隐晦的方式出现,即不是性状创造属,而是属产生性状,这似乎意味着在我们的分类中包含有比单纯类似更为深刻的某种联系。我相信实际情形就是如此,并且相信共同的系统——生物密切类似的一个已知的原因——就是这种联系,这种联系虽然表现有各种不同程度的变异,但被我们的分类部分地揭露了。
  让我们现在考虑一下分类中所采用的规则,并且考虑一下依据以下观点所遭遇的困难,这观点就是,分类或者显示了某种未知的创造计划,或者是一种简单的方案,用来表明一般的命题和把彼此最相似的类型归在一起,大概曾经认为(古代就这样认为)决定生活习性的那些构造部分,以及每一生物在自然组成中的一般位置对分类有很高度的重要性。没有比这种想法更错误的了。没有人认为老鼠和鼩鼱(shrew)、儒艮和鲸鱼、鲸鱼和鱼的外在类似有任何重要性,这等类似,虽然这么密切地与生物的全部生活连结在一起;但仅被列为“适应的或同功的性状”;关于这等类似,俟后再来讨论。任何部分的体制与特殊习性关联愈少,其在分类上就愈重要,这甚至可以说是一般的规律。例如,欧文讲到儒艮时说道,“生殖器官作为与动物的习性和食物关系最少的器官,我总认为它们最清楚地表示真实的亲缘关系。在这些器官的变异中,我们很少可能把只是适应的性状误认为主要的性状”。关于植物,最不重要的是营养与生命所依赖的营养器官;相反地,最重要的却是生殖器官以及它们的产物种籽和胚胎,这是多么值得注意的!同样地,在以前我们讨论机能上不重要的某些形态的性状时,我们看到它们常常在分类上有极高度的重要性。这取决于它们的性状在许多近似群中的稳定性;而它们的稳定性主要由于任何轻微的偏差并没有被自然选择保存下来和累积起来,自然选择只对有用的性状发生作用。
  一种器官的单纯生理上的重要性并不决定它在分类上的价值,以下事实几乎证明了这一点,即在近似的群中,虽然我们有理由设想,同一器官具有几乎相同的生理上的价值,但它在分类上的价值却大不相同。博物学者如果长期研究过某一群,没有不被这个事实打动的;并且在几乎每一位作者的著作中都充分地承认了这个事实。这里只引述最高权威罗怕特·布朗的话就够了;他在讲到山龙眼科(Proteaceae)的某些器官时,说到它们在属方面的重要性,“像它们的所有器官一样,不仅在这一科中,而且据我所知在每一自然的科中都是很不相等的,并且在某些情形下,似乎完全消失了”。还有,他在另一著作中说道,牛栓藤科(Connaraceae)的各属“在一个子房或多子房上,在胚乳的有无上,在花蕾里花瓣作覆瓦状或镊合状上,都是不同的。这些性状的任何一种,单独讲时,其重要性经常在属以上,虽然合在一起讲时,它们甚至不足以区别纳斯蒂属(Cnestis)和牛栓藤(Connarus)”。举一“个昆虫中的例子:在膜翅目里的一个大支群里,照韦斯特伍德所说,触角是最稳定的构造;在另一支群里则差异很大,而且这差异在分类上只有十分次要的价值;可是没有人会说,在同一目的两个支群里,触角具有不同等的生理重要性。同一群生物的同一重要器官在分类上有不同的重要性,这方面的例子不胜枚举。
  再者,没有人会说残迹器官在生理上或生活上有高度的重要性;可是毫无疑问,这种状态的器官在分类上经常有很大的价值。没有人会反对幼小反刍类上颚中的残迹齿以及腿上某些残迹骨骼在显示反刍类和厚皮类之间的密切亲缘关系上是高度有用的。布朗曾经极力主张,残迹小花的位置在禾本科草类的分类上有最高度的重要性。
  关于那些必须被认为生理上很不重要的、但被普遍认为在整个群的定义上高度有用的部分所显示的性状,可以举出无数的事例。例如,从鼻孔到口腔是否有个通道,按照欧文的意见,这是唯一区别鱼类和爬行类的性状——有袋类的下颚角度的变化——昆虫翅膀的折叠状态——某些藻类的颜色——禾本科草类的花在各部分上的细毛——脊椎动物中的真皮被覆物(如毛或羽毛)的性质。如果鸭嘴兽被覆的是羽毛而不是毛,那么这种不重要的外部性状将会被博物学者认为在决定这种奇怪生物与鸟的亲缘关系的程度上是一种重要的帮助。微小性状在分类上的重要性,主要取决于它们与许多<敏感詞>或多或少重要的性状的关系。性状的总体的价值在博物学中确是很明显的。因此,正如经常指出的,一个物种可以在几种性状——无论它具有生理上的高度重要性或具有几乎普遍的优势——上与它的近似物种相区别,可是对于它应该排列在哪里,我们却毫不怀疑。因此,也已经知道,依据任何单独一种性状来分类,不管这种性状如何重要。总是要失败的;因为体制上没有一个部分是永远稳定的。性状的总体的重要性,甚至当其中没有一个性状是重要的时候,也可以单独说明林奈所阐释的格言,即不是性状产生属,而是属产生性状;因为此格言似乎是以许多轻微的类似之点难于明确表示为根据的。全虎尾科的某些植物具有完全的和退化的花;关于后者,朱西厄说,“物种、属、科、纲所固有的性状,大部分都消失了,这是对我们的分类的嘲笑”。当斯克巴属(ASpicarpa)在法国几年内只产生这些退化的花,而与这一目的固有模式在构造的许多最重要方面如此惊人地不合时,朱西厄说,里查德(M·Richard)敏智地看出这一属还应该保留在全虎尾科里。这一个例子很好地说明了我们分类的精神。
  实际上,当博物学者进行分类工作时,对于确定一个群的、或者排列任何特殊物种所用的性状,并不注意其生理的价值。如果他们找到一种近乎一致的为许多类型所共有的、而不为<敏感詞>类型所共有的性状,他们就把它当做一个具有高度价值的性状来应用;如果为少数所共有,他们就把它当做具有次等价值的性状来应用。有些博物学者明确地主张这是正确的原则;并且谁也没有像卓越的植物学者圣·提雷尔那么明确地这样主张。如果常常发见几种微细的性状总是结合地出现,虽然它们之间没有发现显然的联系纽带,也会给它们以特殊的价值。在大多数的动物群中,重要的器官,例如压送血液的器官或输送空气给血液的器官,或繁殖种族的器官,如果是差不多一致的,它们在分类上就会被认为是高度有用的;但是在某些群里,一切这些最重要的生活器官只能提供十分次要价值的性状。这样,正如米勒最近指出的,在同一群的甲壳类里,海萤(Cypridina)具有心脏,而两个密切近似的属,即贝水蚤属(Cypris)和离角蜂虻属(Cytherea),都没有这种器官;海萤的某一物种具有很发达的鳃,而另一物种却不生鳃。
  我们能够理解为什么胚胎的性状与成体的性状有相等的重要性,因为自然的分类当然包括一切龄期在内。但是依据普通的观点,决不能明确地知道为什么胚胎的构造在分类上比成体的构造更加重要,而在自然组成中只有成体的构造才能发挥充分的作用。可是伟大的博物学者爱德华兹和阿加西斯极力主张胚胎的性状在一切性状中是最重要的;而且普遍都认为这种理论是正确的。虽然如此,由于没有排除幼体的适应的性状,它们的重要性有时被夸大了;为了阐明这一点,米勒仅仅依据幼体的性状把甲壳类这一个大的纲加以排列,结果证明这不是一个自然的排列。但是毫无疑问,除去幼体的性状以外,胚胎的性状在分类上具有最高度的价值,这不仅动物是这样,而且植物也是如此。这样,显花植物的主要区分是依据肛胎中的差异,——即依据子叶的数目和位置,以及依据胚芽和胚根的发育方式,我们就要看到,为什么这些性状在分类上具有如此高度的价值,这就是说,因为自然的分类是依据家系进行排列的。
  我们分类经常明显地受到亲缘关系的连锁的影响。没有比确定一切鸟类所共有的许多性状更容易的了;但是在甲壳类里,这样的确定直到现在还被认为是不可能的。有一些甲壳类,其两极端的类型几乎没有一种性状是共同的;可是两极端的物种,因为清楚地与<敏感詞>物种相近似,而这些物种又与另一些物种相近似,这样关联下去,便可明确地认为它们是属于关节动物的这一纲,而不是属于<敏感詞>纲。
  地理分布在分类中也常被应用,特别是被用在密切近似类型的大群的分类中,虽然这并不十分合理。覃明克(Temminck)主张这个方法在鸟类的某些群中是有用的、甚至是必要的;若干昆虫学者和植物学者也曾采用过这个方法。
  最后,关于各个物种群,如目、亚目、科、亚科和属等的比较价值,依我看来,至少在现在,几乎是随意估定的。若干最优秀的植物学者如本瑟姆先生及<敏感詞>人士,都曾强烈主张它们的随意的价值。能够举出一些有关植物和昆虫方面的事例,例如,有一群起初被有经验的植物学者只列为一个属,然后又被提升到亚科或科的等级;这样做并不是因为进一步的研究曾经探查到起初没有看到的重要构造的差异,而是因为具有稍微不同级进的各种差异的无数近似物种以后被发见了。
  一切上述分类上的规则、依据和难点,如果我的看法没有多大错误,都可以根据下述观点得到解释,即,“自然系统”是以伴随着变异的生物由来学说为根据的;——博物学者们认为两个或两个以上物种间那些表明真实亲缘关系的性状都是从共同祖先遗传下来的,一切真实的分类都是依据家系的;——共同的家系就是博物学者们无意识地追求的潜在纽带,而不是某些未知的创造计划,也不是一般命题的说明,更不是把多少相似的对象简单地合在一起和分开。
  但是我必须更加充分地说明我的意见。我相信各个纲里的群按照适当的从属关系和相互关系的排列,必须是严格系统的,才能达到自然的分类;不过若干分枝或群,虽与共同祖先血统关系的近似程度是相等的,而由于它们所经历的变异程度不同,它们的差异量却大有区别;这是由这些类型被置于不同的属、科、部或目中而表示出来的。如果读者不惮烦去参阅第四章里的图解,就会很好地理解这里所讲的意思。我们假定从A到L代表生存于志留纪的近似的属,并且它们是从某一更早的类型传下来的。其中三个属(A、F和I)中,都有一个物种传留下变异了的后代直到今天,而以在最高横线上的十五个属(a14到z14)为代表。那么,从单独一个物种传下来的所有这些变异了的后代,有血统上、即家系上都有同等程度的关系;它们可以比喻为第一百万代的宗兄弟;可是它们彼此之间有着广泛的和不同程度的差异。从A传下来的、现在分成两个或三个科的类型组成一个目,然而从I传下来的,也分成两个科的类型,组成了不同的目。从A传下来的现存物种已不能与亲种A归入同一个属;从I传下来的物种也不能与亲种I归入同一个属。可以假定现存的属F14只有稍微的改变;于是可以和祖属F同归一属,正像某些少数现在仍然生存的生物属于志留纪的属一样。所以,这些在血统上都以同等程度彼此相关联的生物之间所表现的差异的比较价值,就大不相同了。虽然如此,它们的系统的排列不仅在现在是真实的,而且在后代的每一连续的时期中也是真实的。从A传下来的一切变异了的后代,都从它们的共同祖先遗传了某些共同的东西,从I传下来的一切后代也是这样;在每一连续的阶段上,后代的每一从属的分枝也都是这样。但是如果我们假定A或I的任何后代变异得如此之大,以致丧失了它的出身的一切痕迹,在这种情形下,它在自然系统中的位置就丧失了,某些少数现存的生物好像曾经发生过这种事情。F属的一切后代,沿着它的整个系统线,假定只有很少的变化,它们就形成单独的一个属。但是这个属,虽然很孤立,将会占据它应有的中间位置。群的表示,如这里用平面的图解指出的,未免过分简单。分枝应该向四面八方地分出去。如果把群的名字只是简单地写在一条直线上,它的表示就更加不自然了;并且大家知道,我们在自然界中在同一群生物间所发见的亲缘关系,用平面上的一条线来表示,显然是不可能的。所以自然系统就和一个宗谱一样,在排列上是依据系统的;但是不同群所曾经历的变异量,必须用以下方法来表示,即把它们列在不同的所谓属、亚科、科、部、目和纲里。
  举一个语言的例子来说明这种分类观点,是有好处的。如果我们拥有人类的完整的谱系,那么人种的系统的排列就会对现在全世界所用的各种不同语言提供最好的分类;如果把一切现在不用的语言以及一切中间性质的和逐渐变化着的方言也包括在内,那么这样的排列将是唯一可能的分类。然而某些古代语言可能改变得很少,并且产生的新语言也是少数的,而<敏感詞>古代语言由于同宗的各族在散布、隔离和文化状态方面的关系曾经改变很大,因此产生了许多新的方言和语言。同一语系的诸语言之间的各种程度的差异,必须用群下有群的分类方法来表示;但是正当的、甚至唯一应有的排列还是系统的排列;这将是严格地自然的,因为它依据最密切的亲缘关系把古代的和现代的一切语言连结在一起,并且表明每一语言的分支和起源。
  为了证实这一观点,让我们看一看变种的分类,变种是已经知道或者相信从单独一个物种传下来的。这些变种群集在物种之下,亚变种又集在变种之下;在某些情形下,如家鸽,还有<敏感詞>等级的差异。变种分类所依据的规则和物种的分类大致相同。作者们曾经坚决主张依据自然系统而不依据人为系统来排列变种的必要性;比方说,我们被提醒不要单纯因为凤梨的果实——虽然这是最重要的部分——碰巧大致相同,就把它们的两个变种分类在一起;没有人把瑞典芜菁和普通芜菁归在一起,虽然它们可供食用的、肥大的茎是如此相似。哪一部分是最稳定的,哪一部分就会应用于变种的分类:例如,大农学家马歇尔说,角在黄牛的分类中很有用,因为它们比身体的形状或颜色等变异较小,相反地,在绵羊的分类中,角的用处则大大减少,因为它们较不稳定。在变种的分类中,我认为如果我们有真实的谱系,就会普遍地采用系统的分类;并且这在几种情形下已被试用过。因为我们可以肯定,不管有多少变异,遗传原理总会把那些相似点最多的类型聚合在一起。关于翻飞鸽,虽然某些亚变种在喙长这一重要性状上有所不同,可是由于都有翻飞的共同习性,它们还会被聚合在一起;但是短面的品种已经几乎或者完全丧失了这种习性:虽然如此,我们并不考虑这个问题,还会把它和<敏感詞>翻飞鸽归入一群,因为它们在血统上相近,同时在<敏感詞>方面也有类似之处。
  关于自然状态下的物种,实际上每一博物学者都已根据血统进行分类;因为他把两性都包括在最低单位,即物种中;而两性有时在最重要性状上表现了何等巨大的差异,是每一位博物学者都知道的:某些蔓足类的雄性成体和雌雄同体的个体之间几乎没有任何共同之处,可是没有人梦想过把它们分开。三个兰科植物的类型即和尚兰(Monachanthus),蝇兰(Myanthus)和须蕊柱(Catase-tum ),以前被列为三个不同的属,一旦发现它们有时会在同一植株上产生出来时,它们就立刻被认为是变种;而现在我能够示明它们是同一物种的雄者、雌者和雌雄同体者。博物学者把同一个体的各种不同的幼体阶段都包括在同一物种中,不管它们彼此之间的差异以及与成体之间的差异有多大,斯登斯特鲁普(Steenstrup)的所谓交替的世代也是如此,它们只有在学术的意义上才被认为属于同一个体。博物学者又把畸形和变种归在同一物种中,并不是因为它们与亲类型部分类似,而因为它们都是从亲类型传下来的。
  因为血统破普遍地用来把同一物种的个体分类在一起,虽然雄者、雌者以及幼体有时极端不相同;又因为血统曾被用来对发生过一定量的变异、以及有时发生过相当大量变异的变种进行分类,难道血统这同一因素不曾无意识地被用来把物种集合成属,把属集合成更高的群,把一切都集合在自然系统之下吗?我相信它已被无意识地应用了;并且只有这样,我才能理解我们最优秀的分类学者所采用的若干规则和指南。因为我们没有记载下来的宗谱,我们便不得不由任何种类的相似之点去追寻血统的共同性。所以我们才选择那些在每一物种最近所处的生活条件中最不易发生变化的性状。从这一观点看来,残迹器官与体制的<敏感詞>部分在分类上是同样地适用,有时甚至更加适用。我们不管一种性状多么微小——像颚的角度的大小,昆虫翅膀折叠的方式,皮肤被覆着毛或羽毛------如果它在许多不同的物种里,尤其是在生活习性很不相同的物种里,是普遍存在的话,它就取得了高度的价值;因为我们只能用来自一个共同祖先的遗传去解释它何以存在于习性如此不同的如此众多的类型里。如果仅仅根据构造上的单独各点,我们就可能在这方面犯错误,但是当若干尽管如何不重要的性状同时存在于习性不同的一大群生物里,从进化学说看来,我们几乎可以肯定这些性状是从共同的祖先遗传下来的;并且我们知道这等集合的性状在分类上是有特殊价值的。
  我们能够理解,为什么一个物种或一个物种群可以在若干最重要的性状上离开它的近似物种,然而还能稳妥地与它们分类在一起。只要有足够数目的性状,尽管它们多么不重要,泄露了血统共同性的潜在纽带,就可以稳妥地进行这样的分类,而且是常常这样做的。即使两个类型没有一个性状是共同的,但是,如果这些极端的类型之间有许多中间群的连锁把它们连接在一起,我们就可以立刻推论出它们的血统的共同性,并且把它们都放在同一个纲里。因为我们发见在生理上具有高度重要性的器官——即在最不相同的生存条件下用来保存生命的器官———般是最稳定的,所以我们给予它们以特殊的价值;但是,如果这些相同的器官在另一个群或一个群的另一部分中被发见有很大的差异,我们便立刻在分类中把它们的价值降低。我们即将看到为什么胚胎的性状在分类上具有这样高度的重要性。地理分布有时在大属的分类中也可以有效地应用,因为栖息在任何不同地区和孤立地区的同属的一切物种,大概都是从同一祖先传下来的。
  同功的类似——根据上述观点,我们便能理解真实的亲缘关系与同功的即适应的类似之间有很重要的区别。拉马克首先注意到这个问题,继他之后的有麦克里(Macleay)和<敏感詞>一些人士。在身体形状上和鳍状前肢上,儒艮和鲸鱼之间的类似,以及这两个目的哺乳类和鱼类之间的类似,都是同功的。不同目的鼠和鼯髓之间的类似也是同功的;米伐特先生所坚决主张的鼠和一种澳洲小型有袋动物袋鼯(Antechinus)之间的更加密切的类似也是这样。依我看来,最后这两种类似可以根据下述得到解释,即适于在灌木丛和草丛中作相似的积极活动以及对敌人进行隐避。
  在昆虫中也有无数相似的事例;例如,林奈曾被外部表象所误,竞把一个同翅类的昆虫分类为蛾类。甚至在家养变种中,我们也可以看到大致相同的情形,例如,中国猪和普通猪之间的改良品平行现象扩展到广阔的范围;这样,大概就发生了七项的、五项的、四项的和三项的分类法。
  还有另一类奇异的情形,就是外表的密切类似不是由于对相似生活习性的适应,却是为了保护而得到的。我指的是贝茨先生首先描述的某些蝶类模仿<敏感詞>十分不同物种的奇异方式。这一位卓越的观察者阐明,在南美洲的某些地方,例如,有一种透翅蝶(Ithomia),非常之多,大群聚居,在这等蝶群中常常发现另一种蝴蝶,即异脉粉蝶(Leptalis)混在同一群中:后者在颜色的浓淡和斑纹上甚至在翅膀的形状上都和透翅蝶如此密切类似,以致因采集了十一年标本而目光锐利的贝茨先生,虽然处处留神,也不断地受骗。如果捉到这些模拟者和被模拟者,并对它们加以比较时,就会发见它们在重要构造上是很不相同的,不仅属于不同的属,而且也往往属于不同的科。如果这种模拟只见于一两个事例,这就可以当做奇怪的偶合而置之不理。但是,如果我们离开异脉粉蝶模仿透翅蝶的地方继续前进,还可以找到这两个属的<敏感詞>模拟的和被模拟的物种,它们同样密切类似,总共有不下十个属,其中的物种模拟<敏感詞>蝶类。模拟者和被模拟者总是栖息在同一地区的;我们从来没有发见过一个模拟者远远地离开它所模拟的类型。模拟者几乎一定是稀有昆虫:被模拟者几乎在每一种情形下都是繁生成群的,在异脉粉蝶密切模拟透翅蝶的地方,有时还有<敏感詞>鳞翅类昆虫模拟同一种透翅蝶:结果在同一地方,可以找到三个属的蝴蝶的物种,甚至还有一种蛾类,都密切类似第四个属的蝴蝶。值得特别注意的是,异脉粉蝶属的许多模拟类型能够由级进的系列示明不过是同一物种的诸变种,被模拟的诸类型也是这样;而<敏感詞>类型则无疑是不同的物种。但是可以质问:为什么把某些类型看做是被模拟者,而把<敏感詞>类型看做是模拟者呢?贝茨先生令人满意地解答了这个问题,他阐明被模拟的类型都保持它那一群的通常外形,而模拟者则改变了它们的外形,并且与它们最近似的类型不相似。
  其次,我们来探究能够提出什么理由来说明某些蝶类和蛾类这样经常地取得另一十分不同类型的外形;为什么“自然”会堕落到玩弄欺骗手段,使博物学者大惑不解呢?毫无疑问,贝茨先生已经想出了正确的解释。被模拟的类型的个体数目总是很大的,它们必定经常大规模地逃避了毁灭,不然它们就不能生存得那么多;现在已经搜集到大量的证据,可以证明它们是鸟类和<敏感詞>食虫动物所不爱吃的。另一方面,栖息在同一地方的模拟的类型,是比较稀少的,属于稀有的群;因此,它们必定经常地遭受某些危险,不然的话,根据一切蝶类的大量产卵来看,它们就会在三、四个世代中繁生在整个地区。现在,如果一种这样被迫害的稀有的群,有一个成员取得了一种外形,这种外形如此类似一个有良好保护的物种的外形,以致它不断地骗过昆虫学家的富有经验的眼睛,那么它就会经常骗过掠夺性的鸟类和昆虫,这样便可以常常避免毁灭。几乎可以说,贝茨先生实际上目击了模拟者变得如此密切类似被模拟者的过程;因为他发见异脉粉蝶的某些类型,凡是模拟许多<敏感詞>蝴蝶的,都以极端的程度发生变异。在某一地区有几个变种,但其中只有一个变种在某种程度上和同一地区的常见的透翅蝶相类似。在另一地区有两三个变种,其中一个变种远比<敏感詞>变种常见,并且它密切地模拟透翅蝶的另一类型。根据这种性质的事实,贝茨先生断言,异脉粉蝶首先发生变异:如果一个变种碰巧在某种程度上
  和任何栖息在同一地区的普通蝴蝶相类似,那么这个变种由于和一个繁盛的很少被迫害的种类相类似,就会有更好的机会避免被掠夺性的鸟类和昆虫所毁灭,结果就会比较经常地被保存下来;——“类似程度比较不完全的,就一代又一代地被排除了,只有类似程度完全的,才能存留下来繁殖它们的种类”。所以在这里,关于自然选择,我们有一个极好的例证。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 註冊

本版积分规则

Copyright © 2004-2018 Imslr.com
Powered by Discuz! ( 粤ICP备16075051号-2 )
ShenZhenShi ZhiYin Technology Co., Ltd. 聯繫我們
快速回复 返回顶部 返回列表