Aeons隱知_神秘學網站(指引社)

楼主: 阿克
打印 上一主题 下一主题

物种起源

[复制链接]
11
 楼主| 发表于 2008-1-20 13:14:26 | 只看该作者
但我在这里必须说明:我并非假定这种过程会像图表中那样有规则地进行(虽然图表本身已多少有些不规则性),它的进行不是很规则的,而且也不是连续的,而更可能的是:每一类型在一个长时期内保持不变,然后才又发生变异。我也没有假定,最分歧的变种必然会被保存下来:一个中间类型也许能够长期存续,或者可能、也许不可能产生一个以上的变异了的后代:因为自然选择常常按照未被<敏感詞>生物占据的或未被完全占据的地位的性质而发生作用;而这一点又依无限复杂的关系来决定。但是,按照一般的规律,任何一个物种的后代,在构造上愈分歧,愈能占据更多的地方,并且它们的变异了的后代也愈能增加。在我们的图表里,系统线在有规则的间隔内中断了,在那里标以小写数目字,小写数目字标志着连续的类型,这些类型已充分变得不同,足可以被列为变种。但这样的中断是想像的,可以插入任何地方,只要间隔的长度允许相当分歧变异量得以积累,就能这样。
  因为从一个普通的、分布广的、属于一个大属的物种产生出来的一切变异了的后代,常常会共同承继那些使亲代在生活中得以成功的优点,所以一般地它们既能增多数量,也能在性状上进行分歧:这在图表中由(A)分出的数条虚线表示出来了。从(A)产生的变异了的后代,以及系统线上更高度改进的分枝,往往会占据较早的和改进较少的分枝的地位,因而把它们毁灭;这在图表中由几条较低的没有达到上面横线的分枝来表明。在某些情形里,无疑地,变异过程只限于一枝系统线,这样,虽然分歧变异在量上扩大了,但变异了的后代在数量上并未增加。如果把图表里从(A)出发的各线都去掉,只留a1到a10的那一支,便可表示出这种情形,英国的赛跑马和英国的向导狗与此相似,它们的性状显然从原种缓慢地分歧,既没有分出任何新枝,也没有分出任何新族。
  经过一万代后,假定(A)种产生了a10、f10和m10三个类型,由于它们经过历代性状的分歧,相互之间及与共同祖代之间的区别将会很大,但可能并不相等。如果我们假定图表中两条横线间的变化量极其微小,那未这三个类型也许还只是十分显著的变种;但我们只要假定这变化过程在步骤上较多或在量上较大,就可以把这三个类型变为可疑的物种或者至少变为明确的物种。因此,这张图表表明了由区别变种的较小差异,升至区别物种的较大差异的各个步骤。把同样过程延续更多世代(如压缩了的和简化了的图表所示),我们便得到了八个物种,系用小写字母a14到m14所表示,所有这些物种都是从(A)传衍下来的。因而如我所相信的,物种增多了,属便形成了。
  在大属里,发生变异的物种大概总在一个以上。在图表里,我假定第二个物种(1)以相似的步骤,经过一万世代以后,产生了两个显著的变种或是两个物种(w10和z10),它们究系变种或是物种,要根据横线间所表示的假定变化量来决定。一万四千世代后,假定六个新物种n14到z14产生了。在任何一个属里,性状已彼此很不相同的物种,一般会产生出最大数量的变异了的后代;因为它们在自然组成中拥有最好的机会来占有新的和广泛不同的地方:所以在图表里,我选取极端物种(A)与近极端物种(I),作为变异最大的和已经产生了新变种和新物种的物种。原属里的<敏感詞>九个物种(用大写字母表示的),在长久的但不相等的时期内,可能继续传下不变化的后代;这在图表里是用不等长的向上虚线来表示的。
  但在变异过程中,如图表中所表示的那样,另一原理,即绝灭的原理,也起重要的作用。因为在每一处充满生物的地方,自然选择的作用必然在于选取那些在生活斗争中比<敏感詞>类型更为有利的类型,任何一个物种的改进了的后代经常有一种倾向:在系统的每一阶段中,把它们的先驱者以及它们的原始祖代驱逐出去和消灭掉。必须记住,在习性、体质和构造方面彼此最相近的那些类型之间,斗争一般最为剧烈。因此,介于较早的和较晚的状态之间的中间类型(即介于同种中改进较少的和改良较多的状态之间的中间类型)以及原始亲种本身,一般都有绝灭的倾向,系统线上许多整个的旁枝会这样绝灭,它们被后来的和改进了的枝系所战胜。但是,如果一个物种的变异了的后代进入了某一不同的地区,或者很快地适应于一个完全新的地方,在那里,后代与祖代间就不进行斗争,二者就都可以继续生存下去。
  假定我们的图表所表示的变异量相当大,则物种(A)及一切较早的变种皆归灭亡,而被八个新物种a14到m14所代替;并且物种(1)将被六个新物种(n14到z14)所代替。
  我们还可以再做进一步论述。假定该属的那些原种彼此相似的程度并不相等,自然界中的情况一般就是如此;物种(A)和B、C及D的关系比和<敏感詞>物种的关系较近;物种(I)和G、H、K、L的关系比和<敏感詞>物种的关系较近,又假定(A)和(I)都是很普通而且分布很广的物种,所以它们本来一定就比同属中的大多数<敏感詞>物种占有若干优势。它们的变异了的后代,在一万四千世代时共有十四个物种,它们遗传了一部分同样的优点:它们在系统的每一阶段中还以种种不同的方式进行变异和改进,这样便在它们居住的地区的自然组成中,变得适应了许多和它们有关的地位。因此,它们极有可能,不但会取得亲种(A)和(I)的地位而把它们消灭掉,而且还会消灭某些与亲种最接近的原种。所以,能够传到第一万四千世代的原种是极其稀少的。我们可以假定与<敏感詞>九个原种关系最疏远的两个物种(E与F)中只有一个物种(F),可以把它们的后代传到这一系统的最后阶段。
  在我们的图表里,从十一个原种传下来的新物种数目现在是十五。由于自然选择造成分歧的倾向,a14与z14之间在性状方面的极端差异量远比十一个原种之间的最大差异量为大。还有,新种间的亲缘的远近也很不相同。从(A)传下来的八个后代中,a14、q14、p14三者,由于都是新近从a10分出来的,亲缘比较相近;b14和f14系在较早的时期从a5分出来的,故与上述三个物种在某种程度上有所差别;最后O14、i14、m14彼此在亲缘上是相近的,但是因为在变异过程的开端时期便有了分歧,所以与前面的五个物种大有差别,它们可以成为一个亚属或者成为一个明确的属。
  从(1)传下来的六个后代将形成为两个亚属或两个属。但是因为原种(1)与(A)大不相同,(I)在原属里差不多站在一个极端,所以从(I)分出来的六个后代,只是由于遗传的缘故,就与从(A)分出来的八个后代大不相同;还有,我们假定这两组生物是向不同的方向继续分歧的。而连接在原种(A)和(I)之间的中间种(这是一个很重要的论点),除去(F),也完全绝灭了,并且没有遗留下后代。因此,从(I)传下来的六个新种,以及从(A)传下来的八个新种,势必被列为很不同的属,甚至可以被列为不同的亚科。
  所以,我相信,两个或两个以上的属,是经过变异传衍,从同一属中两个或两个以上的物种产生的。这两个或两个以上的亲种又可以假定是从早期一属里某一物种传下来的。在我们的图表里,是用大写字母下方的虚线来表示的,其分枝向下收敛,趋集一点;这一点代表一个物种,它就是几个新亚属或几个属的假定祖先。新物种F14的性状值得稍加考虑,它的性状假定未曾大事分歧,仍然保存(F)的体型,没有什么改变或仅稍有改变。在这种情形里,它和<敏感詞>十四个新种的亲缘关系,乃有奇特而疏远的性质。因为它系从现在假定已经灭亡而不为人所知的(A)和(I)两个亲种之间的类型传下来的,那末它的性状大概在某种程度上介于这两个物种所传下来的两群后代之间。但这两群的性状已经和它们的亲种类型有了分歧,所以新物种(F14)并不直接介于亲种之间,而是介于两群的亲种类型之间;每一个博物学者大概都能想到这种情形。
  在这张图表里,各条横线都假定代表一千代,但它们也可以代表一百万或更多代:它还可以代表包含有绝灭生物遗骸的地壳的连续地层的一部分,我们在《地质学》一章里,还必须要讨论这一问题,并且,我想,在那时我们将会看到这张图表对绝灭生物的亲缘关系会有所启示,——这些生物虽然常与现今生存的生物属于同目、同科、或同属,但是常常在性状上多少介于现今生存的各群生物之间;我们是能够理解这种事实的,因为绝灭的物种系生存在各个不同的辽远时代,那时系统线上的分枝线还只有较小的分歧。
  我看没有理由把现在所解说的变异过程,只限于属的形成。在图表中,如果我们假定分歧虚线上的各个连续的群所代表的变异量是巨大的,那末标着a14到p14、b14和f14、以及o14到m14的类型,将形成三个极不相同的属。我们还会有从(I)传下来的两个极不相同的属,它们与(A)的后代大不相同。该属的两个群,按照图表所表示的分歧变异量,形成了两个不同的科,或不同的目。这两个新科或新目,是从原属的两个物种传下来的,而这两个物种又假定是从某些更古老的和不为人所知的类型传下来的。
  我们已经看到,在各地,最常常出现变种即初期物种的,是较大属的物种。这确实是可以被预料到的一种情形;因为自然选择是通过一种类型在生存斗争中比<敏感詞>类型占有优势而起作用的,它主要作用于那些已经具有某种优势的类型;而任何一群之成为大群,就表明它的物种从共同祖先那里遗传了一些共通的优点。因此,产生新的、变异了的后代的斗争,主要发生在努力增加数目的一切大群之间。一个大群将慢慢战胜另一个大群,使它的数量减少,这样就使它继续变异和改进的机会减少,在同一个大群里,后起的和更高度完善的亚群,由于在自然组成中分歧出来并且占有许多新的地位,就经常有一种倾向,来排挤和消灭较早的、改进较少的亚群。小的和衰弱的群及亚群终归灭亡。瞻望未来,我们可以预言:现在巨大的而且胜利的、以及最少被击破的、即最少受到绝灭之祸的生物群,将能在一个很长时期内继续增加。但是哪几个群能够得到最后的胜利,却无人能够预言;因为我们知道有许多群从前曾是极发达的,但现在都绝灭了。瞻望更远的未来,我们还可预言:由于较大群继续不断地增多,大量的较小群终要趋于绝灭,而且不会留下变异了的后代;结果,生活在任何一个时期内的物种,能把后代传到遥远未来的只是极少数。我在《分类》一章里还要讨论这一问题,但我可以在这里再谈一谈,按照这种观点,由于只有极少数较古远的物种能把后代传到今日,而且由于同一物种的一切后代形成为一个纲,于是我们就能理解,为什么在动物界和植物界的每一主要大类里,现今存在的纲是如此之少。虽然极古远的物种只有少数留下变异了的后代,但在过去遥远的地质时代里,地球上也有许多属、科、目及纲的物种分布着,其繁盛差不多就和今天一样。

  论生物体制倾向进步的程度

  “自然选择”的作用完全在于保存和累积各种变异,这等变异对于每一生物,在其一切生活期内所处的有机和无机条件下都是有利的。这最后的结果是,各种生物对其外界条件的关系日益改进。这种改进必然会招致全世界大多数生物的体制逐渐进步。但我们在这里遇到了一个极复杂的问题,因为,什么叫做体制的进步,在博物学者间还没有一个满意的界说。在脊推动物里,智慧的程度以及构造的接近人类,显然就表示了它们的进步。可以这样设想,从胚胎发育到成熟,各部分和各器官所经过的变化量的大小,似乎可以作为比较的标准;然而有些情形,例如,某些寄生的甲壳动物,它的若干部分的构造在成长后反而变得不完全,所以,这种成熟的动物不能说比它的幼虫更为高等。冯贝尔(Von Baer)所定的标准似乎可应用得最广而且也最好,这个标准是指同一生物的各部分的分化量,——这里我应当附带说明一句,是指成体状态而言——以及它们的不同机能的专业化程度;也就是米尔恩·爱德华所说的生理分工的完全程度。但是,假如我们观察一下,例如鱼类就可以知道这个问题是何等的晦涩不明了:有些博物学者把其中最接近两栖类的,如沙鱼,列为最高等,同时,还有一些博物学者把普通的硬骨鱼列为最高等,因为它们最严格地呈现鱼形并和<敏感詞>脊椎纲的动物最不相像。在植物方面,我们还可以更明确地看出这个问题的晦涩不明,植物当然完全不包含智慧的标准;在这里,有些植物学者认为花的每一器官,如萼片、花瓣、雄蕊、雌蕊充分发育的植物是最高等;同时,还有一些植物学者,却认为花的几种器官变异极大的而数目减少的植物是最高等,这种看法大概较为合理。
  如果我们以成熟生物的几种器官的分化量和专业化量(这里包括为了智慧目的而发生的脑的进步)作为体制高等的标准,那么自然选择显然会指向这种标准的:因为所有生物学者都承认器官的专业化对于生物是看利的,由于专业化可以使机能执行得更好些;因此,向着专业化进行变异的积累是在自然选择的范围之内的。另一方面,只要记住一切生物都在竭力进行高速率的增加,并在自然组成中攫取各个未被占据或未被完全占据的地位,我们就可以知道,自然选择十分可能逐渐使一种生物适合于这样一种状况,在那里几种器官将会成为多余的或者无用的:在这种情形下,体制的等级就发生了退化现象。从最远的地质时代到现在,就全体说,生物体制是否确有进步,在《地质的演替》一章中来讨论将更为方便。
  但是可以提出反对意见:如果一切生物,既然在等级上都是这样倾向上升,为什么全世界还有许多最低等类型依然存在?在每个大的纲里,为什么有一些类型远比<敏感詞>类型更为发达?为什么更高度发达的类型,没有到处取代较低等类型的地位并消灭它们呢?拉马克相信一切生物都内在地和必然地倾向于完善化,因而他强烈地感到了这个问题是非常难解的,以致他不得不假定新的和简单的类型可以不断地自然发生。现在科学还没有证明这种信念的正确性,将来怎么样就不得而知了。根据我们的理论,低等生物的继续存在是不难解释的;因为自然选择即最适者生存,不一定包含进步性的发展——自然选择只利用对于生物在其复杂生活关系中有利的那些变异。那末可以问,高等构造对于一种浸液小虫(infusorian anin lcule),以及对于一种肠寄生虫,甚至对于一种蚯蚓,照我们所能知道的,究有什么利益?如果没有利益,这些类型便不会通过自然选择有所改进,或者很少有所改进,而且可能保持它们今日那样的低等状态到无限时期。地质学告诉我们,有些最低等类型,如浸液小虫和根足虫(rhizopods),已在极长久的时期中,差不多保持了今日的状态。但是,如果假定许多今日生存着的低等类型,大多数自从生命的黎明初期以来就丝毫没有进步,也是极端轻率的;因为每一个曾经解剖过现今被列为最低等生物的博物学者们,没有不被它们的确系奇异而美妙的体制所打动。
  如果我们看一看一个大群里的各级不同体制,就可以知道同样的论点差不多也是可以应用的;例如、在脊推动物中,哺乳动物和鱼类并存;在哺乳动物中,人类和鸭嘴兽并存;在鱼类中,沙鱼和文昌鱼(Amphioxus)并存,后一种动物的构造极其简单,与无脊椎动物很接近。但是,哺乳动物和鱼类彼此没有什么可以竞争的;哺乳动物全纲进步到最高级,或者这一纲的某些成员进步到最高级,并不会取鱼的地位而代之。生理学家相信,脑必须有热血的灌注才能高度活动,因此必须进行空气呼吸;所以,温血的哺乳动物如果栖息于水中,就必须常到水面来呼吸,很不便利。关于鱼类,沙鱼科的鱼不会有取代文昌鱼的倾向,因为我听弗里茨·米勒说过,文昌鱼在巴西南部荒芜沙岸旁的唯一伙伴和竞争者是一种。奇异的环虫(annelid)。哺乳类中三个最低等的目,即有袋类、贫齿类和啮齿类,在南美洲和大量猴子在同一处地方共存,它们彼此大概很少冲突。总而言之,全世界生物的体制虽然都进步了,而且现在还在进步着,但是在等级上将会永远呈现许多不同程度的完善化;因为某些整个纲或者每一纲中的某些成员的高度进步,完全没有必要使那些不与它们密切竞争的类群归于绝灭。在某些情形里,我们以后还要看到,体制低等的类型,由于栖息在局限的或者特别的区域内,还保存到今日,它们在那里遭遇到的竞争较不剧烈,而且在那里由于它们的成员稀少,阻碍了发生有利变异的机会。
  最后,我相信,许多体制低等的类型现在还生存在世界上,是有多种原因的。在某些情形里,有利性质的变异或个体差异从未发生,因而自然选择不能发生作用而加以积累。大概在一切情形里,人对于最大可能的发展量,没有足够的时间。在某些少数情形里,体制起了我们所谓的退化。但主要的原因是在于这样的事实,即在极简单的生活条件下,高等体制没有用处——或者竟会有害处,因为体制愈纤细,就愈不容易受调节,就愈容易损坏。
  再来看一下生命的黎明初期,那时候一切生物的构造,我们可以相信都是极简单的,于是可以问:身体各部分的进步即分化的第一步骤是怎样发生的呢?赫伯特·斯潘塞先生大概会答复说,当简单的单细胞生物一旦由于生长或分裂而成为多细胞的集合体时,或者附着在任何支持物体的表面时,他的法则“任何等级的同型单位,按照它们和自然力变化的关系,而比例地进行分化”,就发生作用了。但是,既没有事实指导我们,只在这一题目上空想,几乎是没有什么用处的。但是,如果假定,在许多类型产生以前,没有生存竞争因而没有自然选择,就会陷入错误的境地:生长在隔离地区内的一个单独物种所发生的变异可能是有利的,这样,全部个体就可能发生变异,或者,两个不同的类型就可能产生,但我在《绪论》将结束时曾经说过,如果承认我们对于现今生存千世界上的生物间的相互关系极其无知,并且对于过去时代的情形尤其如此,那末关于物种起源问题还有许多不能得到解释的地方,便不会有人觉得奇怪了。

  性状的趋同

  H.C.沃森先生认为我把性状分歧的重要性估计得过高了(虽然他分明是相信性状分歧的作用的),并且认为所谓性状趋同同样也有一部分作用。如果有不同属的但系近属的两个物种,都产生了许多分歧新类型,那末可以设想,这些类型可能彼此很接近,以致可以把它们分类在一个属里;这样,两个不同属的后代就合二而成为一属了。就大不相同的类型的变异了的后代来说,把它们的构造的接近和一般相似归因于性状的趋同,在大多数场合里都是极端轻率的。结晶体的形态,仅由分子的力量来决定,因此,不同的物质有时会呈现相同的形态是没有什么奇怪的。但就生物来说,我们必须记住,每一类型都是由无限复杂的关系来决定的,即由已经发生了的变异来决定的,而变异的原因又复杂到难于究诘,——是由被保存的或被选择的变异的性质来决定的,而变异的性质则由周围的物理条件来决定,尤其重要的是由同它进行竞争的周围生物来决定的,——最后,还要由来自无数祖先的遗传(遗传本身就是彷惶的因素)来决定,而一切祖先的类型又都通过同样复杂的关系来决定。因此,很难相信,从本来很不相同的两种生物传下来的后代,后来是如此密接地趋同了,以致它们的整个体制变得近乎一致,如果这种事情曾经发生,那么在隔离极远的地层里,我们就可以看到毫无遗传联系的同一类型会重复出现,而衡量证据正和这种说法相反。
  自然选择的连续作用,结合件状的分歧,就能产生无数的物种的类型,华生先生反对这种说法。如果单就无机条件来讲,大概有很多物种会很快地适应于各种很不相同的热度和湿度等等;但我完全承认,生物间的相互关系更为重要;随着各处物种的继续增加,则有机的生活条件必定变得愈益复杂。结果,构造的有利分歧量,初看起来,似乎是无限的,所以能够产生的物种的数量也应该是无限的。甚至在生物最繁盛的地区,是否已经充满了物种的类型,我们并不知道;好望角和澳洲的物种数量如此惊人,可是许多欧洲植物还是在那里归化了。但是,地质学告诉我们,从第三纪早期起,贝类的物种数量,以及从同时代的中期起,哺乳类的数量并没有大量增加,或根本没有增加。那未,抑制物种数量无限增加的是什么呢?一个地区所能维持的生物数量(我不是指物种的类型数量)必定是有限制的,这种限制是由该地的物理条件来决定的;所以,如果在一个地区内栖息着极多的物种,那末每一个物种或差不多每一个物种的个体就会很少;这样的物种由于季节性质或敌害数量的偶然变化就容易绝灭。绝灭过程在这种场合中是迅速的,而新种的产生永远是缓慢的。想像一下一种极端的情况吧,假如在英国物种和个体的数量一样多,一次严寒的冬季或极干燥的夏季,就会使成千上万的物种绝灭。在任何地方,如果物种的数量无限增加,各个物种就要变为个体稀少的物种,两个稀少的物种,由于常常提到的理由,在一定的期间内所产生的有利变异是很少的;结果,新种类型的产生过程就要受到阻碍。任何物种变为极稀少的时候)近亲交配将会促其绝灭;作者们以为立陶宛的野牛(Aurochs)、苏格兰的赤鹿、挪威的熊等等的衰颓,皆由于这种作用所致。最后,我以为这里还有一个最重要的因素,即一个优势物种,在它的故乡已经打倒了许多竞争者,就会散布开去,取代许多<敏感詞>物种的地位。得康多尔曾经阐明,这些广为散布的物种一般还会散布得极广;结果,它们在若干地方就会取代若干物种的地位,而使它们绝灭,这样,就会在全世界上抑制物种类型的异常增加。胡克博士最近阐明,显然有许多侵略者由地球的不同地方侵入了澳洲的东南角,在那里,澳洲本地物种的类量就大大地减少了。这些论点究有多大价值,我还不敢说;但把这些论点归纳起来,就可知道它们一定会有在各地方限制物种无限增加的倾向。

  本章提要

  在变化着的生活条件下,生物构造的每一部分几乎都要表现个体差异,这是无可争论的;由于生物按几何比率增加,它们在某年龄、某季节或某年代,发生激烈的生存斗争,这也确是无可争论的;于是,考虑到一切生物相互之间及其与生活条件之间的无限复杂关系,会引起构造上、体质上及习性上发生对于它们有利的无限分歧,假如说从来没有发生过任何有益于每一生物本身繁荣的变异,正如曾经发生的许多有益于人类的变异那样,将是一件非常离奇的事。但是,如果有益于任何生物的变异确曾发生,那么具有这种性状的诸个体肯定地在生活斗争中会有最好的机会来保存自己;根据坚强的遗传原理,它们将会产生具有同样性状的后代。我把这种保存原理,即最适者生存,叫做“自然选择”。“自然选择”导致了生物根据有机的和无机的生活条件得到改进;结果,必须承认,在大多数情形里,就会引起体制的一种进步。然而,低等而简单的类型,如果能够很好地适应它们的简单生活条件,也能长久保持不变。
  根据品质在相应龄期的遗传原理,自然选择能够改变卵、种籽、幼体,就像改变成体一样的容易。在许多动物里,性选择,能够帮助普通选择保证最强健的、最适应的雄体产生最多的后代。性选择又可使雄体获得有利的性状,以与<敏感詞>雄体进行斗争或对抗;这些性状将按照普遍进行的遗传形式而传给一性或雌雄两性。
  自然选择是否真能如此发生作用,使各种生物类型适应于它们的若干条件和生活处所,必须根据以下各章所举的证据来判断。但是我们已经看到自然选择怎样引起生物的绝灭;而在世界史上绝灭的作用是何等巨大,地质学已明白他说明了这一点。自然选择还能引致性状的分歧;因为生物的构造、习性及体质愈分歧;则这个地区所能维持的生物就愈多,——我们只要对任何一处小地方的生物以及外地归化的生物加以考察,便可以证明这一点。所以,在任何一个物种的后代的变异过程中,以及在一切物种增加个体数目的不断斗争中,后代如果变得愈分歧,它们在生活斗争中就愈有成功的好机会,这样,同一物种中不同变种间的微小差异,就有逐渐增大的倾向,一直增大为同属的物种间的较大差异、或者甚至增大为异属间的较大差异。
  我们已经看到,变异最大的,在每一个纲中是大属的那些普通的、广为分散的、以及分布范围广的物种;而且这些物种有把它们的优越性——现今在本上成为优势种的那种优越性——传给变化了的后代的倾向。正如方才所讲的,自然选择能引致性状的分歧,并且能使改进较少的和中间类型的生物大量绝灭。根据这些原理,我们就可以解释全世界各纲中无数生物问的亲缘关系以及普遍存在的明显区别。这的确是奇异的事情,——只因为看惯了就把它的奇异性忽视了——即一切时间和空间内的一切动物和植物,都可分为各群,而彼此关联,正如我们到处所看到的情形那样,——即同种的变种问的关系最密切,同属的物种问的关系较疏远而且不均等,乃形成区(section)及亚属;异属的物种间关系更疏远,并且属间关系远近程度不同,乃形成亚科、科、目、亚纲及纲。任何一个纲中的几个次级类群都不能列入单一行列,然皆环绕数点,这些点又环绕着另外一些点,如此下去,几乎是无穷的环状组成。如果物种是独立创造的,这样的分类便不能得到解释;但是,根据遗传,以及根据引起绝灭和性状分歧的自然选择的复杂作用,如我们在图表中所见到的,这一点便可以得到解释。
  同一纲中一切生物的亲缘关系常常用一株大树来表示。我相信这种比拟在很大程度上表达了真实情况。绿色的、生芽的小枝可以代表现存的物种;以往年代生长出来的枝条可以代表长期的、连续的绝灭物种。在每一生长期中,一切生长着的小枝都试图向各方分枝,并且试图遮盖和弄死周围的新技和枝条,同样地物种和物种的群在巨大的生活斗争中,随时都在压倒<敏感詞>物种。巨枝为分大枝,再逐步分为愈来愈小的枝,当树幼小时,它们都曾一度是生芽的小枝;这种旧芽和新芽由分枝来连结的情形,很可以代表一切绝灭物种和现存物种的分类,它们在群之下又分为群。当这树还仅仅是一株矮树时,在许多茂盛的小枝中,只有两三个小枝现在成长为大枝了,生存至今,并且负荷着<敏感詞>枝条;生存在久远地质时代中的物种也是这样,它们当中只有很少数遗下现存的变异了的后代,从这树开始生长以来,许多巨枝和大枝都已经枯萎而且脱落了;这些枯落了的、大小下等的枝条,可以代表那些没有留下生存的后代而仅处于化石状态的全目、全科及全属。正如我们在这里或那里看到的,一个细小的、孤立的枝条从树的下部分叉处生出来,并且由于某种有利的机会,至今还在旺盛地生长着,正如有时我们看到如鸭嘴兽或肺鱼之类的动物,它们由亲缘关系把生物的两条大枝连络起来,并由于生活在有庇护的地点,乃从致命的竞争、里得到幸免。芽由于生长而生出新芽,这些新芽如果健壮,就会分、出枝条遮盖四周许多较弱枝条,所以我相信,这巨大的“生命之树”(Tree ofLife)在其传代中也是这样,这株大材用它的枯落的枝条填充了地壳,并且用它的分生不息的美丽的枝条遮盖了地面。
回复

使用道具 举报

12
 楼主| 发表于 2008-1-20 13:17:47 | 只看该作者
第五章 变异的法则
改变了的外界条件的效果——与自然选择相结合的使用和不使用;飞翔器官和视觉器官——气候驯化——相关变异——生长的补偿和节约——假相关——重复的、残迹的及低等体制的构造易生变异——发育异常的部分易于高度变异:物种的性状比属的性状更易变异:次级性征易生变异——同属的物种以类似的方式发生变异——长久亡失的性状的重现——提要。
  我以前有时把变异——在家养状况下的生物里是如此普遍而且多样,在自然状况下的生物里其程度梢为差些——说得好像是由于偶然而发生的。当然这是一种完全不正确的说法,但是它足以表明我们对于各种特殊变异的原因的无知无识。某些作家相信,产生个体差异或构造的轻微偏差,就像使孩子像他的双亲那样,是生殖系统的机能。但是变异和畸形,在家养状况下比在自然状况下更常发生,并且分布广的物种的变异性,比分布狭的物种为大,这些事实便引导出一个结论,即变异性一般是与生活条件相关联的,而各个物种已经在这样的生活条件下生活了若干世代。在第一章里,我曾试图阐明,改变了的外界条件按照两种方式发生作用,即直接地作用于整个体制或只作用于体制的某几部分,和间接地通过生殖系统发生作用。在一切情形里,都含有两种因素,一是生物的本性,二者之中它最为重要,一是外界条件的性质。改变了的外界条件的直接作用产生了一定的或不定的结果。在后一种情形里,体制似乎变成可塑性的了,并且我们看到了很大的彷徨变异性,在前一种情形里,生物的本性是这样的,如果处于一定的条件下,它们容易屈服,并且一切个体,或者差不多一切个体都以同样的方式发生变异。
  要决定外界条件的改变,如气候、食物等的改变,在一定方式下曾经发生了多大作用,是很困难的。我们有理由相信,在时间的推移中,它们的效果是大于明显事实所能证明的。但是,我们可以稳妥地断言,不能把构造的无数复杂的相互适应,如我们在自然界中的各种生物间所看到的,单纯归因于这种作用。在下面的几种情形中,外界条件似乎产生了一些微小的一定效果:福布斯(E.Forbes)断言,生长在南方范围内的贝类,并且如果是生活在浅水中的,其颜色比生活在北方的或深水中的同种贝类要来得鲜明;但也末必完全如此。古尔德先生(Mr。Gould)相信,同种的鸟,生活在明朗大气中的,其颜色比生活在海边或岛上的,要来得鲜明:沃拉斯顿相信,在海边生活,会影响昆虫的颜色。摩坤-丹顿(Moquin Tandon)曾列出一张植物表,这张表所举的植物,当生长在近海岸处时,在某种程度上叶多肉质,虽然在别处并不如此。这些轻微变异的生物是有趣的,因为它们所表现的性状,与局限在同样外界条件下的同一物种所具有的性状是相似的。
  当一种变异对于任何生物有极微小的用处时,我们就无法说出这一变异有多少应当归国于自然选择的累积作用,有多少应当归因千生活条件的一定作用。例如,皮货商人很熟悉,同种动物的生活的地方愈往北,它们的毛皮便愈厚而且愈好;但谁能说出这等差异,有多少是由于毛皮最温暖的个体在许多世代中得到了利益而被保存,有多少是由于严寒气候的作用呢?因为气候似乎对于我们家养兽类的毛皮是有某种直接作用的。
  在分明不同的外界条件下的同一物种,能产生相似的变种;另一方面,在分明相同的外界条件下的同一物种,却产生不相似的变种,我们可以举出许多这样的事例。还有,有些物种虽然生活在极相反的气候下,仍能保持纯粹,或完全不变,无数这样的事例,对于每一个博物学者都是熟悉的。这种论点,便使我考虑到周围条件的直接作用比由于我们完全不知道的原因所引起的变异倾向较不重要。
  就某种意义来说,生活条件不但能直接地或间接地引起变异,同样地也可以把自然选择包括在内,因为生活条件决定了这个或那个变种能否生存。但是当人类是选择的执行者时,我们就可以明显看出,变化的两种要素是差别分明的;变异性以某种方式被激发起来,但这是人的意志,它使变异朝着一定方向累积起来;后一作用相当于自然状况下最适者生存的作用。
  受自然选择所控制的器官增加使用和不使用的效果

  根据第一章里所讲的事实,在我们的家养动物里,有些器官因为使用而被加强和增大了,有些器官因为不使用而被缩小了,我想这是无可怀疑的;而且我认为这种变化是遗传的,在不受拘束的自然状况下,因为我们不晓得祖代的类型,所以我们没有比较的标准用来判别长久连续使用和不使用的效果;但是有许多动物所具有的构造,是能够依据不使用的效果而得到最好解释的。正如欧文教授所说的,在自然界里,没有比鸟不能飞更为异常的了;然而有若干鸟却是这样的。南美洲的大头鸭(1oger-headed duck)只能在水面上拍动它的翅膀,它的翅膀几乎和家养的艾尔斯伯里鸭(Aylesbury duck)的一样;值得注意的事实是,据坎宁安先生(Mr.Cunningham)说,它们的幼鸟是会飞的,但到长大时就失去了这种能力。因为在地上觅食的大形鸟,除逃避危险以外,很少飞翔,所以说现今栖息在或不久之前曾经栖息在没有食肉兽的几个海岛上几种鸟的几乎没有翅膀的状态,大概是由于不使用的缘故。鸵鸟的确是栖息在大陆上的,它暴露在它不能用飞翔来逃脱的危险下,但是它能够像四足兽那样有效地以踢它的敌人来保护自己。我们可以相信,鸵鸟一属的祖先的习性原是和野雁相像的,但因为它的身体的大小和重量在连续的世代里增加了,它就更多地使用它的腿,而更少地使用它的翅膀了,终于变得不能飞翔。
  科尔比(Kirbx)曾经说过(我也曾看到过同样的事实),许多吃粪的雄性甲虫的前趾节,即前足常常会断掉;他检查了所采集的十六个标本,其中没有一个留有一点痕迹,阿佩勒蜣螂(Onitesapelles)的前足跗、节的亡失是如此惯常,以致这一昆虫被描述为不具有跗节。在某些<敏感詞>属里,它们虽具有跗节,但只是一种残迹的状态而已。埃及人目为神圣的甲虫Ateuchus,其跗节完全缺如。偶然的损伤能否遗传的问题目前虽然还不能决定;但是勃隆-税奎(Brown-Seqttuard)在豚鼠里观察到外科手术有遗传效果,这一显著事例应当使我们在反对这种遗传倾向时加以小心。因此,对于神圣甲虫的全然没有前足跗节,以及对于某些<敏感詞>属仅仅留有跗节的残迹,最妥当的看法恐怕是不把它当作损伤的遗传,而把它看作是由于长久继续不使用的结果;因为许多吃粪的甲虫一般都失去了跗节,这种情形一定发生在它们的生命早期;所以,跗节对于此等昆虫不具有很大的重要性,或者不曾被它们多所使用。
  在某些情形里,我们很容易把全部或主要由自然选择所引起的构造变异,看作是不使用的缘故。沃拉斯顿先生曾发现一件值得注意的事实,就是栖息在马得拉的550种甲虫(现在知道的更多)中,有200种甲虫的翅膀是如此的不完全,以致不能飞翔;并且在二十九个土著的属中,不下二十三个属的所有物种都是这样的情况!有几种事实,——即,世界上有许多地方的甲虫常常被风吹到海中溺死;在马得拉的甲虫,据沃拉斯顿的观察,隐蔽得很好,直到风和日丽的时候方才出来;无翅甲虫的比例数,在没有遮拦的德塞塔群岛(Desertas)比在马得拉更大;特别是还有一种异常的、为沃拉斯顿所特别重视的事实,就是绝对需要使用翅膀的某些大群甲虫,在<敏感詞>各地非常多,但在这里却几乎完全没有;这几种考察使我们相信,这样多的马得拉甲虫之所以没有翅膀,主要的原因大概是与不使用结合在一起的自然选择的作用,因为在许多连续的世代中,有些甲虫个体或者由于翅膀发育得稍不完全,或者由于习性怠惰,飞翔最少,所以不会被风吹到海里去,因而获得最好的生存机会;反之,那些最喜欢飞翔的甲虫个体最常被风吹到海里去,因而遭到毁灭。
  在马得拉也有不在地面上觅取食物的昆虫,如某些在花朵中觅取食物的鞘翅类和鳞翅类,它们必须经常地使用它们的翅膀以获取食物,据沃拉斯顿先生猜测,这些昆虫的翅膀不但一点也没有缩小,甚至会更加增大。这是完全符合自然选择的作用的。因为当一种新的昆虫最初到达这个岛上时,增大或者缩小它们翅膀的自然选择的倾向,将决定大多数个体或者胜利地和风战斗而被保存下来,或者放弃这种企图,少飞或竟不飞而被保存下来。譬如船在近海岸处破了,对于船员来说,善于游泳的如果能够游得愈远就愈好,不善于游泳的,还是攀住破船倒比较好些。
  鼹鼠和某些穴居的啮齿类动物的眼睛是残迹的,并且在某些情形下,它们的眼睛完全被皮和毛所遮盖。眼睛的这种状态大概是由于不使用而渐渐缩小的缘故,不过这里恐怕还有自然选择的帮助。南美洲有一种穴居的啮齿动物,叫做吐科吐科(tuco-tuco),即Ctenomys,它的深入地下的习性甚至有过于鼹鼠;一位常捉它们的西班牙人告诉我说,它们的眼睛多半是瞎的。我养过一只活的,它的眼睛的确是这种情形,解剖后才知道它的原因,是由于瞬膜发炎。因为眼睛常常发炎对于任何动物必定是有损害的,同时因为眼睛对于具有穴居习性的动物肯定不是必要的,所以在这种情形下,它们的形状缩小,上下眼睑黏连,而且有毛生在上面,可能是有利的;倘使有利,自然选择就会对不使用的效果有所帮助。
  众所熟知,有几种属于极其不同纲的动物,栖息在卡尼鄂拉(Carniola)及肯塔基(Kentucky)的洞穴里,是盲目的。某些蟹,虽然已经没有眼睛,而眼柄却依然存在;好像望远镜的透镜已经失去了,而望远镜的架子还依然存在。因为对于生活在黑暗中的动物来说,眼睛虽然没有用处,而会有什么害处是很难想像的,所以它们的亡失可以归因于不使用。有一种盲目动物,叫做洞鼠(Neotoma),西利曼教授(Prof.Silliman)曾经在距洞口半英里的地点捉到了两只洞鼠,可见它们并非住在极深的处所,它们的两只眼睛大而有光;这种动物,据西利曼教授告诉我说,当被放在逐渐加强的光线下,大约一个月后,就能朦眬地辨认面前的东西了。
  很难想像,生活条件还有比在几乎相似气候下的石灰岩洞更为相似的了;所以按照盲目动物系为美洲和欧洲的岩洞分别创造出来的旧观点,可以预料到它们的体制和亲缘是极其相似的。如果我们对于这两处的整个动物群加以观察,显然并非如此;单是关于昆虫方商,希阿特(Sclhiodte)就曾说过:“所以我们不能用纯粹地方性以外的眼光来观察全部现象,马摩斯洞穴(Mammoth cave)(在肯塔基)和卡尼鄂拉洞穴之间的少数类型的相似性,也不过是欧洲和北美洲的动物群之间所一般存在的类似性之明显表现而已。”依我看来,我们必须假定美洲动物在大多数情形下具有正常的视力,它们逐代慢慢地从外界移入肯塔基洞穴的愈来愈深的处所,就橡欧洲动物移入欧洲的洞穴里那样。我们有这种习性渐变的某种证据;希阿特说过:“所以我们把地下动物群看作是从邻近地方受地理限制的动物的小分枝,它们一经扩展到黑暗中去,便适应于周围的环境了。最初从光明转入到黑暗的动物,与普通类型相距并不远。接着,构造适于微光的类型继之而起;最后是适于全然的黑暗的那些类型,它们的形成是十分特别的。”我们必须理解,希阿特的这些话并不适用于同一物种,而是适用于不同物种的。动物经过无数世代,达到最深的深处时,它们的眼睛因为不使用,差不多完全灭迹了,而自然选择常常会引起别的变化,如触角或触须的增长,作为盲目的补偿。尽管有这种变异,我们还能看出美洲的洞穴动物与美洲大陆别种动物的亲缘关系,以及欧洲的洞穴动物与欧洲大陆动物的亲缘关系。我听达纳教授(Prof.Dana)说过,美洲的某些洞穴动物确系如此,而欧洲的某些洞穴昆虫与其周围地方的昆虫极其密切相似。如果按照它们是被独立创造出来的普通观点来看,我们对于盲目的洞穴动物与该二大陆的<敏感詞>动物之间的亲缘关系,就很难给予一个合理的解释。新旧两个世界的儿种洞穴动物的亲缘应当是密切关联的,我们可从众所周知的这两个世界的大多数<敏感詞>生物间的亲缘关系料想到。因为埋葬虫(Batbysica)属里的一个盲目的物种,在离洞<敏感詞>外很远的阴暗的岩石下很多,这一属里的洞穴物种的视觉亡失,大概与其黑暗生活没有关系;这是很自然的,一种昆虫既已失去视官,就易于适应黑暗的洞穴了。另一盲目的盲步行虫属(Anophthalmus)也具有这种显著的特性,据默里先生的观察,除却在洞穴里,没有在别处见到过这些物种;然而栖息在欧洲和美洲若干洞穴里的物种是不同的;可能这些物种的祖先,当没有失去视觉之前,曾广布于该二大陆上,后来除却那些隐居在洞穴里的,都绝灭了。有些穴居动物十分特别,这是没有什么值得奇怪的,如阿加西斯(Agassiz)说过的盲鳉(Amb1yopsis),又如欧洲的爬虫类——盲目的盲螈(Proteus),都是很奇特的,我所奇怪的只是古生物的残余没有被保存得更多,因为住在黑暗处所的动物稀少,竞争是较不激烈的。

  气候驯化

  植物的习性是遗传的,如开花的时期,休眠的时间,种籽发芽时所需要的雨量等等,我因此要略谈一下气候驯化。同属的不同物种的植物栖息在热地和寒地原是极其普通的,如果同属的一切物种确是由单一的亲种传下来的,那末气候驯化一定会容易地在传衍的长期过程中发生效用。众所周知,每一个物种都适应它的本土气候:从寒带甚至从温带来的物种不能忍受热带的气候,反过来也是一样。还有许多多汁的植物不能忍受潮湿的气候。但是一个物种对于它生活于其中的气候的适应程度,常常被估价过高。我们可从以下事实推论这一点:我们往往不能预知一种引进植物能否忍受我们的气候,而从不同地区引进的许多植物和动物却能在位里完全健康地生活。我们有理由相信,物种在自然状况下,由于与别种生物竞争,在分布上受到严格的限制,这作用和物种对于特殊气候的适应性十分相似,或者更大些。但是不管这种对气候的适应性在大多数情况下是否很密切,我们有证据可以证明某些少数植物在某种程度上变得自然习惯于不同的气温了;这就是说,它们变得驯化了:胡克博士从喜马拉雅山上的不同高度的地点,采集了同种的松树和杜鹃花属的种籽,把它们栽培在英国,发现它们在那里具有不同的抗寒力。思韦茨先生(Mr.Thwaites)告诉我说,他在锡兰看到过同样事实;H.C.沃森先生曾把欧洲种的植物从亚速尔群岛(Azores)带到英国作过类似的观察;我还能举出一些别的例子来。关于动物,也有若干确实的事例可以引证,自从有史时期以来,物种大大地扩展分布范围,它们从较暖的纬度扩展到较冷的纬度,同时也有相反的扩展;但是我们不能肯定知道此等动物是否严格适应它们本土的气候,虽然在一般情形下我们认为是这样的;我们也不知道它们后来是否对于它们的新家乡变得特别驯化,比它们开始时能够更好地适应于这些地方。
  我们可以推论家养动物最初是由未开化人选择出来的,因为它们有用,同时因为它们容易在幽禁状态下生育,而不是因为后来发现它们能够输送到遥远的地方去,因此,我们家养动物的共同的、非常的能力,不仅能够抵抗极其不同的气候,而且完全能够在那种气候下生育(这是非常严格的考验),根据这点,可以论证现今生活在自然状况下的动物多数能够容易地抵抗大不相同的气候的。然而我们千万不要把这一论点推论得太远,因为我们的家养动物可能起源于几个野生祖先;例如,热带狼和寒带狼的血统恐怕混合在我们的家养品种里的。鼠(rat)和鼷鼠(mouse)不能看作是家养动物,但是它们被人带到世界的许多地方去,现在分布之广,超过了<敏感詞>任何啮齿动物;它们在北方生活于非罗(Faroe)的寒冷气候下,在南方生活于福克兰(Falkland),并且还生活在热带的许多岛屿上。因此,对于任何特殊气候的适应性,可以看作是这样一种性质,它能够容易地移植于内在体质的广泛揉曲性里去,而这种性质是大多数动物所共有的。根据这种观点,人类自己和他们的家养动物对于极端不同气候的忍受能力,以及绝灭了的象和犀牛在以前曾能忍受冰河期的气候,而它们的现存种却具有热带和亚热带的习性,这些都不应被看作是异常的事情,而应看作是很普通的体质揉曲性在特殊环境条件下发生作用的一些例子。
  物种对于任何特殊气候的驯化,有多少是单纯由于习性,有多少是由于具有不同内在体质的变种的自然选择,以及有多少是由于上述二者的结合,还是一个难解的问题。根据类推,以及根据农业著作甚至古代的中国百科全书的不断忠告,说把动物从此地运到彼地时必须十分小心,我必须相信习性或习惯是有一些影响的。因为人类并不见得能够成功地选择那么多的品种和亚品种,都具有特别适于他们地区的体质,我想,造成这种结果的,一定是由于习性,另一方面,自然选择必然倾向于保存那样一些个体,它们生来就具有最适于它们居住地的体质。在论述许多种栽培植物的论文里写道,某些变种比<敏感詞>变种更能抵抗某种气候;美国出版的果树著作明显阐明,某些变种经常被推荐于北方,某些变种被推荐于南方;因为这些变种大多数都起源于近代,它们的体质差异不能归因于习性。菊芋(Jerusalem artichoke)在英国从来不用种籽来繁殖,因而也没有产生过新变种,这个例子曾被提出来证明气候驯化是没有什么效果的,因为它至今还是像往昔一样的娇嫩!又如,菜豆(kidey-bean)的例子也常常作为相同目的而被引证,并且更为有力;但是如果有人播种菜豆如此之早,以致它的极大部分被霜所毁灭,以后从少数的生存者中采集种籽,并且注意防止它们的偶然杂交,然后他同样小心地再从这些幼苗采集种籽,进行播种,如此继续二十代,才能说这个试验是做过了,我们不能假定菜豆实生苗的体质从来不产生差异,因为有一个报告说,某些实生苗确比<敏感詞>实生苗具有很大的抗寒力,而且我自己就曾看到过这种显著的事例。
  总之,我们可以得出这样的结论,即习性或者使用和不使用,在某些场合中,对于体质和构造的变异是有重要作用的,但这一效果,大部往往和内在变异的自然选择相结合,有时内在变异的自然选择作用还会支配这一效果。

  相关变异

  所谓相关变异是说,整个体制在它的生长和发育中如此紧密地结合在一起,以致当任何一部分发生些微的变异,而被自然选择所累积时,<敏感詞>部分也要发生变异。这是一个极其重要的问题,对于它的理解还极不够充分,而且完全不同种类的事实在这里无疑易于混淆在一起。我们不久将看到,单纯的遗传常会表现相关作用的假相。最明显的真实例子之一,就是幼龄动物或幼虫在构造上所发生的变异,自然地倾向于影响成年动物的构造。同源的、在胚胎早期具有相等构造的、而且必然处于相似外界条件下的身体若干部分显著地有按照同样方式进行变异的倾向:我们看到身体的右侧和左侧,按照同样方式进行变异;前脚和后脚,甚至颚和四肢同时进行变异,因为某些解剖学者相信,下颚和四肢是同源的。我不怀疑,这些倾向要或多或少地完全受着自然选择的支配;例如,只在一侧生角的一群雄鹿曾经一度存在过,倘这点对于该品种曾经有过任何大的用处,大概自然选择就会使它成为永久的了。
  某些作者曾经说过,同源的部分有合生的倾向;在畸形的植物里常常看到这种情形:花瓣结合成管状是一种最普通的正常构造里同源器官的结合。坚硬的部分似乎能影响相连接的柔软部分的形态;某些作者相信鸟类骨盘形状的分歧能使它们的肾的形状发生显著的分歧。另外一些人相信,就人类来说,母亲的骨盘形状由于压力会影响胎儿头部的形状。就蛇类来说,按照施来格尔(Schlegel)的意见,身体的形状和吞食的状态能决定几种最重要的内脏的位置和形状。
  这种结合的性质,往往不十分清楚。小圣·提雷尔先生曾强调指出,有些畸形常常共存,另外一些畸形则很少共存,我们实在举不出任何理由来说明这一点。关于猫,毛色纯白和蓝眼睛与耳聋的关系,龟壳色的猫与雌性的关系;关于鸽,有羽毛的脚与外趾间蹼皮的关系,初孵出的幼鸽绒毛的多少与将来羽毛颜色的关系;还有,土耳其裸狗的毛与牙的关系;虽然同源无疑在这里起着作用,难道还有比这些关系更为奇特的吗?关于上述相关作用的最后一例,哺乳动物中表皮最异常的二目,即鲸类和贫齿类(犹狳及穿山甲等),同样全部都有最异常的牙齿,我想这大概不能是偶然的;但是这一规律也有很多例外,如米伐特先生(Mivart)所说过的,所以它的价值很小。
  据我所知,阐明和使用无关的、因而和自然选择无关的相关和变异法则的重要性,没有任何事例比某些菊科和伞形科植物的内花和外花的差异更为适宜的了。众所周知,例如雏菊的中央小花和射出花是有差异的,这种差异往往伴随着生殖器官的部分退化或全部退化。但某些这类植物的种籽在形状和刻纹上也有差异。人们有时把这些差异归因于总苞对于小花的压力,或者归因于它们的互相压力,而且某些菊科的射出花的种籽形状与这一观念相符合;但是在伞形科,如胡克博士告诉我的,其内花和外花往往差异最大的,决不是花序最密的那些物种。我们可以这样设想,射出花花瓣的发育是靠着从生殖器官吸收养料,这就造成了生殖器官的发育不全;但这不见得是唯一的原因,因为在某些菊科植物里,花冠并无不同,而内外花的种籽却有差异。这些种籽之间的差异可能与养料不同地流向中心花和外围花有关:至少我们知道,关于不整齐花,那些最接近花轴的最易变成化正花(peloria),即变为异常的相称花。关于这一事实,我再补充一个事例,亦可作为相关作用的一个显著例子,即在许多天竺葵属(Pelargonium)植物里,花序的中央花的上方二瓣常常失去浓色的斑点;如果发生这样情形,其附着的蜜腺即十分退化;因而中心花乃变为化正花即整齐花了。如果上方的二瓣中只有一瓣失去颜色,那末蜜腺并不是十分退化,而只是大大地缩短了。
  关于花冠的发育,斯普伦格尔的意见是这样的,射出花的用处在于引诱昆虫,昆虫的媒介对于这些植物的受精是高度有利或者必需的,这一意见很合理;倘如此,则自然选择可能已经发生作用了。但是,关于种籽,它们的形状差异,并不经常和花冠的任何差异相关,因而似乎不能有什么利益:在伞形科植物里,此等差异具有如此明显的重要性——外围花的种籽的胚珠有时候是直生的,中心花的种籽胚珠却是倒生的——以致老得康多尔主要用这些性状对此类植物进行分类。因此,分类学者们认为有高度价值的构造变异,也许全部由于变异和相关法则所致,据我们所能判断的,这对于物种并没有丝毫的用处。
  物种的整个群所共有的、并且确实单纯由于遗传而来的构造,赏被错误地。归因于相关变异;因为一个古代的祖先通过自然选择,可能已经获得了某一种构造上的变异,而且经过数千代以后,又获得了另一种与上述变异无关的变异;这两种变异如果遗传给习性分歧的全体后代,那么自然会使我们想到它们在某种方式上一定是相关的。此外还有些<敏感詞>相关情况,显然由于自然选择的单独作用所致。例如,得康多尔曾经说过,有翅的种籽从来不见于不裂开的果实;关于这一规律,我可以作这样的解释:除非蒴裂开,种籽就不可能通过自然选择而渐次变成有翅的;因为只有在蒴开裂的情况下,稍微适于被风吹扬的种籽,才能比那些较不适于广泛散布的种籽占优势。

  生长的补偿和节约

  老圣·提雷尔和歌德差不多同时提出生长的补偿法则即平衡法则;或者依照歌德所说的:“为了要在一边消费,自然就被迫在另一边节约。”我想,这种说法在某种范围内对于我们的家养动物也是适用的:如果养料过多地流向一部分或一器官,那末流向另一部分的养料至少不会过多;所以要获得一只产乳多的而又容易肥胖的牛是困难的。同一个甘蓝变种,不会产生茂盛的滋养的叶,同时又结出大量的含油种籽。当我们的水果的种籽萎缩时,它们的果实本身却在大小和品质方面大大地改进了。家鸡,头上有一大丛冠毛的,一般都伴随着缩小的肉冠,多须的,则伴随着缩小的肉垂。对于在自然状态下的物种,很难普遍应用这一法则;但是许多优秀的观察者,特别是植物学者,都相信它的真实性。然而我不预备在这里列举任何例子,因为我觉得很难用什么方法来辨别以下的效果,即一方面有一部分通过自然选择而大大地发达了,而另一连接部分由于同样的作用或不使用却缩小了;另一方面,一部分的养料被夺取,实际是由于另一连接部分的过分生长。
  我又推测,某些已提出过的补偿情形,以及某些<敏感詞>事实,可以归纳在一个更为一般的原则里,即自然选择不断地试图来节约体制的每一部分。在改变了的生活条件下,如果一种构造,以前是有用的,后来用处不大了,这构造的缩小是有利的,因为这可使个体不把养料空费在建造一种无用的构造上去。我考察蔓足类时颇受打动,由此我理解了一项事实,而且类似的事例是很多的:即一种蔓足类如寄生在别一种蔓足类体内因而得到保护时,它的外壳即背甲便几乎完全消失了。雄性四甲石砌属(Ibla)就是这种情形,寄生石砌属(Proteolepas)确实更加如此:一切别的蔓足类的背甲都是极其发达的,它是由非常发达的头部前端的高度重要的三个体节所构成,并且具有巨大的神经和肌肉;但寄生的和受保护的寄生石砌,其整个的头的前部却大大地退化了,以致缩小到仅仅留下一点非常小的残迹,附着在具有捕捉作用的触角基部。如果大而复杂的构造成为多余时,把它省去,对于这个物种的各代个体都是有决定性的利益的;因为各动物都处于生存斗争之中,它们借着减少养料的浪费,来获得维持自己的较好机会。
  因此我相信,身体的任何部分,一经通过习性的改变,而成为多余时,自然选择终会使它缩小,而毫不需要相应程度地使<敏感詞>某一部分发达增大。相反地,自然选择可能完全成功地使一个器官发达增大,而不需要某一连接部分的缩小,以作为必要的补偿。
  重复的、残迹的、体制低等的构造易生变异
  正如小圣·提雷尔说过的,无论在物种和变种里,凡是同一个体的任何部分或器官重复多次(如蛇的脊椎骨,多雄蕊花中的雄蕊),它的数量就容易变异;相反地,同样的部分或器官,如果数量较少,就会保持稳定,这似乎已成为一条规律了。这位作者以及一些植物学家还进一步指出,凡是重复的器官,在构造上极易发生变异。用欧文教授的用语来说,这叫做“生长的重复”(vegetativerepetition),是低等体制的标示,所以前面所说的,在自然系统中低级的生物比高级的生物容易变异,是和博物学者们的共同意见一致的。我这里所谓低等的意思是指体制的若干部分很少专业化,以担任一些特殊机能;当同一器官势必担任多种工作时,我们大概能理解,它们为什么容易变异,因为自然选择对于这种器官形状上的偏差,无论保存或排斥,都比较宽松,不像对于专营一种功能的部分那样严格。这正如一把切割各种东西的刀于,差不多具有任何形状都可以;反之,专为某一特殊目的的工具,必须具有某一特殊的形状。永远不要忘记,自然选择只能通过和为了各生物的利益,才能发生作用。
  正如一般所承认的,残迹器官高度容易变异。我们以后还要讲到这一问题;我在这里只补充一点,即它们的变异性似乎是由于它们毫无用处所引起的结果,因而也是由于自然选择无力抑制它们构造上的偏差所引起的结果。
  任何一个物种的异常发达的部分,比起近似物种里的同一部分,有易于高度变异的倾向
  数年前,我很被沃特豪斯的关于上面标题的论点所打动。欧文教授也似乎得出了近似的结论。要使人相信上述主张的真实性,如果不把我所搜集的一系列的事实举出来,是没有希望的,然而我不可能在这里把它们介绍出来。我只能说,我所相信的是一个极其普遍的规律。我考虑到可能发生错误的几种原因,但我希望我已对它们加以斟酌了。必须理解,这一规律决不能应用于任何身体部分,即使这是异常发达的部分;除非在它和许多密切近似物种的同一部分相比较下,显示出它在一个物种或少数物种里是异常发达时,才能应用这一规律。例如蝙蝠的翅膀,在哺乳动物纲中是一个最异常的构造,但在这里并不能应用这一规律,因为所有的蝙蝠都有翅膀;假如某一物种和同属的<敏感詞>物种相比较,而具有显著发达的翅膀,那末只有在这种情况下,才能应用这一规律。在次级性征以任何异常方式出现的情况下,便可以大大地应用这一规律。亨特(Hunter)所用的次级性征这一名词,是指属于雌雄一方的性状,但与生殖作用并无直接关系,这一规律可应用于雄性和雌性,但可应用于雌性的时候比较少,因为它们很少具有显著的次级性征。这一规律可以很明显地应用于次级性征,可能是由于这些性状不论是否以异常的方式而出现,总是具有巨大变异性的——我想这一事实很少值得怀疑。但是这一规律并不局限于次级性征,在雌雄同体的蔓足类里明白地表示了这种情形;我研究这一目时,特别注意了沃德豪斯的话,我十分相信,这一规律几乎常常是适用的。我将在未来的著作里,把一切较为显著的事例列成一个表;这里我只举出一个事例以说明这一规律的最大的应用性。无柄蔓足类(岩藤壶)的盖瓣,从各方面说,都是很重要的构造,甚至在不同的属里它们的差异也极小;但有一属,即在四甲藤壶属(Pyrgoma)的若干物种里,这些瓣却呈现很大的分歧;这种同源的瓣的形状有时在异种之间竟完全不同;而且在同种个体里其变异量也非常之大,所以我们如果说这些重要器官在同种各变种间所表现的特性差异,大于异属间所表现的,并不算夸张。
  关于鸟类,栖息在同一地方的同种个体,变异极小,我曾特别注意到它们;这一规律的确似乎是适用于这一纲的。我还不能发现这一规律可以应用于植物,假如不是植物的巨大变异性使得它们变异性的相对程度特别困难于比较,我对这一规律真实性的信赖就要发生严重的动摇。
  当我们看到一个物种的任何部分或器官以显著的程度或显著的方式而发达时,正当的假定是,它对于那一物种是高度重要的;然而正是在这种情况下,它是显著易于变异的。为什么会如此呢?根据各个物种是被独立创造出来的观点,即它的所有部分都像我们今天所看到的那样,我就不能找出什么解释。但根据各个物种群是从<敏感詞>某些物种传下来并且通过自然选择而发生了变异的观点,我想我们就能得到一一些说明,首先让我说明几点。如果我们对于家养动物的任何部分或整体不予注意,而不施任何选择,那末这一部分(例如,多径鸡(Dorking fowl]的肉冠),或整个品种,就不会再有一致的性状:可以说这一品种是退化了。在残迹器官方面,在对特殊目的很少专业化的器官方面,以及,大概在多形的类群方面,我们可以看到几乎同样的情形;固为在这些情形下,自然选择未曾或者不能发生充分的作用,因此体制便处于彷徨的状态。但是这里特别和我们有关系的是,在我们的家养动物里,那些由于连续的选择作用而现今正在迅速进行变化的构造也是显著于变异的,看一看鸽子的同一品种的一些个体吧,并且看一看翻飞鸽的嘴、传书鸽的嘴和肉垂、扇尾鸽的姿态及尾羽等等具有何等重大的差异量;这些正是目前英国养鸽家们主要注意的各点。甚至在同一个亚品种里,如短面翻飞鸽这个亚品种,要育成近乎完全标准的鸽子是极其困难的,多数都与标准距离甚远。因此可以确实他说,有一种经常的斗争在下述两方面之间进行着,一方面是回到较不完全的状态去的倾向,以及发生新变异的一种内在倾向,另一方面是保持品种纯真的不断选择的力量。最后还是选择获胜,因此我们不必担心会遭到如此失败,以致从优良的短面鸽品系里育出像普通翻飞鸽那样粗劣的鸽。在选择作用正在迅速进行的情况下,正在进行变异的部分具有巨大的变异性,是常常可以预料到的。
  现在让我们转到自然界来。任何一个物种的一个部分如果比同属的<敏感詞>物种异常发达,我们就可以断言,这一部分自那几个物种从该属的共同祖先分出的时期以来,已经进行了非常重大的变异。这一时期很少会十分久远,因为一个物种很少能延长到一个地质时代以上。所谓异常的变异量是指非常巨大的和长期连续的变异性而言,这种变异性是由自然选择为了物种的利益而被继续累积起来的。但是异常发达的部分或器官的变异性,既已如此巨大而且是在不很久远的时期内长久连续进行,所以按照一般规律,我们大概还可料想到,这些器官比在更长久时期内几乎保持稳定的体制的<敏感詞>部分,具有更大的变异性。我相信事实就是这样。一方面是自然选择,另一方面是返祖和变异的倾向,二者之间的斗争经过一个时期会停止下来的;并且最异常发达的器官会成为稳定的,我觉得没有理由可以怀疑这一点。因此,一种器官,不管它怎样异常,既以近于同一状态传递给许多变异了的后代,如蝙蝠的翅膀,按照我们的理论来讲,它一定在很长久的时期内保持着差不多同样的状态;这样,它就不会比任何<敏感詞>构造更易于变异。只有在变异是比较新近的、而且异常巨大的情况下,我们才能发现所谓发育的变异性(generative variability)依然高度存在。因为在这种情形下,由于对那些按照所要求的方式和程度发生变异的个体进行继续选择,以及由于对返归以前较少变异的状态进行继续排除,变异性很少被固定下来。
回复

使用道具 举报

13
 楼主| 发表于 2008-1-20 13:18:46 | 只看该作者
物种的性状比属的性状更易变异

  前节所讨论的原理也可应用于现在这个问题。众所周知,物种的性状比属的性状更易变化。举一个简单的例子来说明:如果在一个大属的植物里,有些物种开蓝花,有些物种开红花,这颜色只是物种的一种性状;开蓝花的物种会变为开红花的物种,对此谁都不会感到惊奇,相反亦如是;但是,如果一切物种都是开蓝花的,这颜色就成为属的性状,而它的变异便是更异常的事情了。我选取这个例子的理由是因为多数博物学者所提出的解释不能在这里应用,他们认为物种的性状之所以比属的性状更易变异,是因为物种的分类所根据的那些部分,其生理重要性小于属的分类所根据的那些部分。我相信这种解释只是部分而间接地正确的;在《分类》一章里我还要讲到这一点。引用证据来支持物种的普通性状比属的性状更易变异的说法,几乎是多余的了;但关于重要的性状,我在博物学著作里一再注意到以下的事情,就是,当一位作者惊奇地谈到某一重要器官或部分在物种的大群中一般是极其固定的,但在亲缘密切的物种中差异却很大时,它在同种的个体中常常易于变异。这一事实指出,一般具有属的价值的性状,一经降低其价值而变为只有物种的价值时,虽然它的生理重要性还保持一样,但它却常常变为易于变异的了。同样的情形大概也可以应用于畸形:至少小圣·提雷尔无疑地相信,一种器官在同群的不同物种中,愈是正常地表现差异,在个体中就愈多受变态所支配。
  按照各个物种是被独立创造的流俗观点来看,在独立创造的同属各物种之间,为什么构造上相异的部分比密切近似的部分更容易变异,我看对此无法做出任何说明。但是,按照物种只是特征显著的和固定的变种的观点来看,我们就可以预期常常看到,在比较近期内变异了的因而彼此有所差异的那些构造部分,还要继续变异。或者,可以用另一种方式来说明,凡是一个属的一切物种的构造彼此相似的、而与近缘属的构造相异的各点,就叫作属的性状。这些性状可以归因于共同祖先的遗传,因为自然选择很少能使若干不同的物种按照完全一样的方式进行变异,而这些不同的物种已经适于多少广泛不同的习性。所谓属的性状是在物种最初从共同祖先分出来以前就已经遗传下来了,此后它们没有发生什么变异,或者只出现了些许的差异,所以时至今日它们大概就不会变异了。另一方面,同属的某一物种与另一物种的不同各点就叫做物种的性状。因为这些物种的性状是在物种从一个共同祖先分出来以后,发生了变异并且出现了差异,所以它们大概还应在某种程度上常常发生变异,至少比那些长久保持稳定的那些体制的部分,更易变异。
  第二性征易生变异。——我想无须详细讨论,博物学者们都会承认第二性征是高度变异的。他们还会承认,同群的物种彼此之间在第二性征上的差异,比在体制的<敏感詞>部分上的差异更加广泛。例如,比较一下在第二性征方面有强烈表现的雄性鹑鸡类之间的差异量与雌性鹑鸡类之间的差异量,便可明了。这些性状的原始变异性的原因还不明显;但我们可以知道,为什么它们没有像<敏感詞>性状那样地表现了固定性和一致性,因为它们是被性选择所积累起来的,而性选择的作用不及自然选择作用那样严格,它不致引起死亡,只是使较为不利的雄性少留一些后代而已。不管第二性征的变异性的原因是什么,因为它们是高度变异的,所以性选择就有了广阔的作用范围,因而也就能够成功地使同群的物种在第二性征方面比在<敏感詞>性状方面表现较大的差异量。
  同种的两性间第二性征的差异,一般都表现在同属各物种彼此差异所在的完全相同的那一部分,这是一个值得注意的事实。关于这一事实,我愿举出列在我的表中最前面的两个事例来说明;因为在这些事例中,差异具有非常的性质,所以它们的关系决不是偶然的。甲虫足部附节的同样的数目,是极大部分甲虫类所共有的一种性状;但是在木吸虫科(Engldx)①里,如韦斯特伍得(Westwood)所说的,附节的数目变异很大;并且在同种的两性间,这个数目也有差异。还有,在掘地性膜翅类里,翅脉是大部分所共有的性状,所以是一种高度重要的性状;但是在某些属里,翅脉因物种不同而有差异,并且在同种的两性间也是如此。卢伯克爵士(Sir.J·Lubbock)近来指出,若干小形甲壳类动物极好地说明了这一法则。“例如,在角镖水蚤(Pontella)属里,第二性征主要是由的触角和第五对脚表现出来的:同时物种的差异也主要表现在这些器官方面。”这种关系对于我的观点有明显的意义:我认为同属的一切物种之必然由一个共同祖先传下来与任何一个物种的两性由一个共同祖先传下来是一样的。因此,不管共同祖先或它的早期后代的哪一部分成为变异的,则这一部分的变异极其可能要被自然选择或性选择所利用,以使若干物种在自然组成中适于各自位置,而且使同一物种的两性彼此适合,或者使雄性在占有雌性方面适于和<敏感詞>雄性进行斗争。
  最后,我可以总结,物种的性状,即区别物种之间的性状,比属的性状,即一切物种所具有的性状,具有更大的变异性;——一个物种的任何部分与同属<敏感詞>物种的同一部分相比较,表现异常发达时,这一部分常常具有高度的变异性;一个部分无论怎样异常发达,如果这是全部物种所共有的,则其变异性的程度是轻微的;——第二性征的变异性是大的,并且在亲缘密切的物种中其差异是大的;第二性征的差异和通常的物种差异,一般都表现在体制的同一部分,——这一切原理都是紧密关联在一起的。这主要是由于,同一群的物种都是一个共同祖先的后代,这个共同祖先遗传给它们许多共同的东西,——由于晚近发生大量变异的部分,比遗传已久而未曾变异的部分,可能继续变异下去,——由于随着时间的推移,自然选择能够或多或少地完全克服返祖倾向和进一步变异的倾向,------由于性选择不及自然选择那样严格,——更由于同一部分的变异,曾经被自然选择和性选择所积累,因此就使它适应了第二性征的目的以及一般的目的。
  不同的物种呈现相似的变异,所以一个物种的一个变种常常表现一个近似物种所固有的一种性状,或者复现一个早期祖代的某些性状。——观察一下我们的家养族,就会极其容易地理解这些主张。地区相隔辽远的一些极不相同的鸽的品种,呈现头生逆毛和脚生羽毛的亚变种——这是原来的岩鸽所不曾具有的一些性状;所以,这些就是两个或两个以上不同的族的相似变异。突胸鸽常有的十四枝或者甚至十六枝尾羽,可以被认为是一种变异,它代表了另一族即扇尾鸽的正常构造。我想不会有人怀疑,所有这些相似变异,系由于这几个鸽族都是在相似的未知影响下,从一个共同亲代遗传了相同的体质和变异倾向;在植物界里,我们也有一个相似变异的例子,见于“瑞典芜蔷”(Swedish turnip)和芜青甘蓝(Ruta baga)的肥大的茎(俗称根部);若干植物学者把此等植物看作是从一个共同祖先培养出来的两个变种:如果不是这样,这个例子便成为在两个不同物种呈现相似变异的例子了;除此二者之外,还可加入第三者,即普通芜菁。按照每一物种是被独立创造的这一流俗观点,我们势必不能把这三种植物的肥大茎的相似性,都归因于共同来源的真实原因,也不能归因于按照同样方式进行变异的倾向,而势必归因于三种分离的而又密切关联的创造作用。诺丹曾在葫芦这一大科里、<敏感詞>作家们曾在我们的谷类作物里观察到相似变异的同样事例。在自然状况下昆虫也发生同样的情形,最近曾被沃尔什先生很有才能地讨论过,他已经把它们归纳在他的“均等变异性”法则里去了。
  但是关于鸽子,还有另外一种情形,即在一切品种里会偶尔出石板蓝色的鸽子,它们的翅膀上有两条黑带,腰部白色,尾端有一条黑带,外羽近基部的外缘呈白色。因为这一切颜色都属于亲种岩鸽的特性,我假定这是一种返祖的情形,而不是在若干品种中所出现的新的相似变异,这是不会有人怀疑的。我想,我们可以有信心地作出这样的结论,因为,如我们已经看到的,此等颜色的标志非常容易在两个不同的、颜色各异的品种的杂交后代中出现;在这种情形下,这种石板蓝色以及几种色斑的重现并不是由于外界生活条件的作用,而仅是依据遗传法则的杂交作用的影响。
  有些性状已经失去许多世代或者甚至数百世代还能重现,无疑是一件很令人惊奇的事实。但是,当一个品种和<敏感詞>品种杂交,虽仅仅一次,它的后代在许多世代中还会有一种倾向,偶尔发生复现外来品种的性状,——有些人说大约是十二代或多至二十代。从一个祖先得来的血(用普通的说法),在十二世代后,其比例只为2048比1;然而,如我们所知道的,一般相信,返祖的倾向是被这种外来血液的残余部分所保持的。在一个未曾杂交过的、但是它的双亲已经失去了祖代的某种性状的一个品种里,重现这种失去了的性状的倾向,无论强或弱,如前面已经说过的,差不多可以传递给无数世代,即使我们可以看到相反的一面,也是如此。一个品种的已经亡失的一种性状,经过许多世代以后还重复出现,最近情理的假设是,并非一个个体突然又获得数百代以前的一个祖先所失去了的性状,而是这种性状在每了世代里都潜伏存在着,最后在未知的有利条件下发展起来了。例如,在很少产生一只蓝色鸽的排李鸽里,大概每一世代都有产生蓝色羽毛的潜在倾向。通过无数世代传递下来的这种倾向,比十分无用的器官即残迹器官同样传递下来的倾向在理论的不可能性上不会更大。产生残迹器官的倾向有时的确是这样遗传下去的。
  同属的一切物种既然假定是从一个共同祖先传下来的,那就可以料想到,它们偶尔会按照相似的方式进行变异;所以两个物种或两个以上的物种的一些变种会彼此相似,或者某一物种的一个变种在某些性状上会与另一不同的物种相似,——这另一个物种,按照我们的观点,只是一个特征显著而固定的变种而已。但是单纯由于相似变异而发生的性状,其性质大概是不重要,因为一切机能上的重要性状的保存,须依照这个物种的不同习性,通过自然选择而决定的。我们可以进一步料想到,同属的物种偶尔会重现长久失去的性状。然而,因而我们不知道任何自然类群的共同祖先,所以也就不能把重现的性状与相似的性状区别开来。例如,如果我们不知道亲种岩鸽不具毛脚或倒冠毛,我们就不能说在家养品种中出现这样的性状究系返祖现象抑仅仅是相似变异;但我们从许多色斑可以推论出,蓝色是一种返祖的例子,因为色斑和蓝色是相关联的,而这许多色斑大概不会从一次简单的变异中一齐出现。特别是当颜色不同的品种进行杂交时,蓝色和若干色斑如此常常出现;由此我们尤其可以推论出上述一点。因此,在自然状况下,我们一般无法决定什么情形是先前存在的性状的重现,什么情形是新的而又相似的变异,然而,根据我们的理论,我们有时会发现一个物种的变异着的后代具有同群的<敏感詞>个体已经具有的相似性状。这是无可怀疑的一点。
  识别变异的物种的困难,主要在于变种好像模仿同属中的<敏感詞>物种。还有,介于两个类型之间的类型不胜枚举,而这两端的类型本身是否可以列为物种也还有疑问;除非我们把一切这些密切近似类型都认为是分别创造的物种,不然的话,上述一点就阐明了,它们在变异中已经获得了<敏感詞>类型的某些性状。但是相似变异的最好证据还在于性状一般不变的部分或器官,不过这些器官或部分偶尔也发生变异,以致在某种程度上与一个近似物种的同一部分或器官相似。我搜集了一系列的此种事例;但在这里,和以前一样,我很难把它们列举出来。我只能重复地说,这种情形的确存在,而已在我看来是很值得注意的。
  然而我要举出一个奇异而复杂的例子,这是一个任何重要性状完全不受影响的例子,但是它发生在同属的若干物种里——一部分是在家养状况下的,一部分是在自然状况下的。这个例子几乎可以肯定是返祖现象。驴的腿上有时有很明显的横条纹,和斑马腿上的相似:有人确定幼驴腿上的条纹最为明显,据我调查所得,我相信这是确实的。肩上的条纹有时是双重的,在长度和轮廓方面很易于变异。有一头白驴,这不是皮肤变白症,被描述为没有脊上和肩上的条纹,在深色的驴子里,此等条纹也很不明显或实际上完全失去了。据说由帕拉斯命名的野驴(koulan of Pallas)的肩上有双重的条纹,布莱斯先生曾经看见过一头野驴的标本具有明显的肩条纹,虽然它本应是没有的;普尔上校(Col·poole)告诉我说,这个物种的幼驹,一般在腿上都有条纹,而在肩上的条纹却很模糊。斑驴(quagga)虽然在体部有斑马状的明显条纹,但在腿上却没有;然而格雷博士(Dr.Grav)所绘制的一个标本,却在后脚踝关节处有极清楚的斑马状条纹。
  关于马,我在英国搜集了许多极其不同品种的和各种颜色的马在脊上生有条纹的例子:暗褐色和鼠褐色的马在腿上生有横条纹的并不罕见,在栗色马中也有过一个这样的例子;暗褐色的马有时在肩上生有不明显的条纹,而且我在一匹赤褐色马的肩上也曾看到条纹的痕迹。我的儿子为我仔细检查了和描绘了双肩生有条纹的和腿部生有条纹的一匹暗褐色比利时驾车马;我亲自看见过一匹暗褐色的德文郡矮种马在肩上生有三条平行条纹,还有人向我仔细描述过一匹小形的韦尔什矮种马(Welsh pony)在肩上也生有三条平行的条纹。
  在印度西北部,凯替华品种(Kattywar breed)的马,通常都生有条纹,我听普尔上校说。他曾为印度政府查验过这个品种,没有条纹的马被认为是非纯粹的品种。它们在脊上都生有条纹;腿上也通常生有条纹,肩上的条纹也很普通,有时候是双重的,有时候是三重的;还有,脸的侧面有时候也生有条纹。幼驹的条纹常常最明显;老马的条纹有时完全消失了。普尔上校见过初生的灰色和赤褐色的凯替华马都有条纹。从w·w·爱德华先生给我的材料中,我有理由推测,幼小的英国赛跑马在脊上的条纹比长成的马普遍得多。我自己近来饲养了一匹小马,它是由赤褐色雌马(是东土耳其雄马和佛兰德雌马的后代)和赤褐色英国赛跑马交配后产生的;这幼驹产下来一星期的时候,在它的臀部和前额生有许多极狭的、暗色的、斑马状的条纹,腿部也生有极轻微的条纹,但所有这些条纹不久就完全消失了。这里无须再详细地讲了。我可以说,我搜集了许多事例,表明不同地方的极其不同品种的马在腿上和肩上都生有条纹,从英国到中国东部,并且从北方的挪威到南方的马来群岛,都是如此。在世界各地,这种条纹最常见于暗褐色和鼠褐色的马;暗褐色这一名词,包括广大范围的颜色,从介于褐色和黑色中间的颜色起,一直到接近淡黄色止。
  我知道曾就这个问题写过论文的史密斯上校(Col.H·Smith)相信,马的若干品种是从若干原种传下来的,——其中一个原种是暗褐色的而且生有条纹;并且他相信上述的外貌都因为在古代与暗褐色的原种杂交所致。但我们可以稳妥地驳斥这种意见;因为那壮大的比利时驾车马,韦尔什杂种马,挪威矮脚马,细长的凯替华马等等,都栖息在世界上相隔甚远的地方,要说它们都必须曾经与一个假定的原种杂交过,则是十分不可能的。
  现在让我们来讲一讲马属中几个物种的杂交效果。罗林(Rol-lin)断言驴和马杂交所产生的普通骡子,在腿上特别容易生有条纹;按照戈斯先生(Mr·Gosse)的意见,美国某些地方的骡子,十分之九在腿上生有条纹。我有一次见过一匹骡子,腿上条纹如此之多,以致任何人都会想像它是斑马的杂种;w·C·马丁先生(Mr·Martin)在一篇有关马的优秀论文里,绘有一幅骡子图,与此相像。我曾见过四张驴和斑马的杂种彩色图,在它们的腿上所生的极明显条纹,远比身体<敏感詞>部分为甚;并且其中有一匹在肩上生有双重条纹。莫顿爵士(Lord Morton)有一个著名的杂种,是从栗色雌马和雄斑驴育成的,这杂种,以及后来这栗色雌马与黑色亚拉伯马所产生的纯种后代,在腿上都生有比纯种斑驴还要更加明显的横条纹,最后,还有另一个极其值得注意的事例,格雷博士曾绘制过驴子和野驴的一个杂种(并且他告诉我说,他还知道有第二个事例);虽然驴只偶尔在腿上生有条纹,而野驴在腿上并没有条纹,甚至在肩上也没有条纹,但是这杂种在四条腿上仍然生有条纹,并且像暗褐色的德文郡马与韦尔什马的杂种一样,在肩上还生有三条短条纹,甚至在脸的两侧也生有一些斑马状的条纹。关于最后这一事实,我非常相信决不会有一条带色的条纹像普通所说的那样是偶然发生的,因此,驴和野驴的杂种在脸上生有条纹的事情便引导我去问普尔上校:是否条纹显著的凯替华品种的马在脸上也曾有过条纹,如上所述,他的回答是肯定的。
  对于这些事实,我们现在怎样说明呢?我们看到马属的几个不同品种,通过简单的变异,就像斑马似的在腿上生有条纹,或者像驴似的在肩上生有条纹。至于马,我们看到,当暗褐色——这种颜色接近于该属<敏感詞>物种的一般颜色——出现时,这种倾向便表现得强烈。条纹的出现,并不伴生形态上的任何变化或任何<敏感詞>新性状。我们看到,这种条纹出现的倾向,以极不相同的物种之间所产生的杂种最为强烈。现在看一看几个鸽品种的情形:它们是从具有某些条纹和<敏感詞>标志的一种浅蓝色的鸽子(包含两个或三个亚种或地方族)传下来的;如果任何品种由于简单的变异而具有浅蓝色时,此等条纹和<敏感詞>标志必然会重新出现:但其形态或性状却不会有任何变化。当最古老的和最纯粹的各种不同颜色的品种进行杂交时,我们看到这些杂种就有重现蓝色和条纹以及<敏感詞>标志的强烈倾向。我曾说过,解释这种古老性状重现的合理假设是,在每一连续世代的幼鸽里都有重现久已失去的性状的倾向,这种倾向,由于未知的原因,有时占优势。我们刚才谈到,在马属的若干物种里,幼马的条纹比老马更明显或表现得更普遍,如果把鸽的品种,其中有些是在若干世纪中纯正地繁殖下来的,称为物种,那末这种情形与马属的若干物种的情形是何等完全一致!至于我自己,我敢于自信地回顾到成千成万代以前,有一种动物具有斑马状的条纹,其构造大概很不相同,这就是家养马(不论它们是从一个或数个野生原种传下来的)、驴、亚洲野驴、斑驴以及斑马的共同祖先。
  我推测那些相信马属的各个物种是独立创造出来的人会主张,每一个物种被创造出来就赋有一种倾向,在自然状况下和在家养状况下都按照这种特别方式进行变异,使得它常常像该属<敏感詞>物种那样地变得具有条纹;同时每一个物种被创造出来就赋有一种强烈的倾向,当和栖息在世界上相隔甚远的地方的物种进行杂交时,所产生出的杂种在条纹方面不像它们自己的双亲,而像该属的<敏感詞>物种。依我看来,接受这种观点,就是排斥了真实的原因,而代以不真实的或至少是不可知的原因。这种观点使得上帝的工作成为仅仅是模仿和欺骗的了;倘接受这一观点,我几乎就要与老朽而无知的天地创成论者们一起来相信贝类化石从来就不曾生活过,而只是在石头里被创造出来以模仿生活在海边的贝类的。
  提要——关于变异法则,我们还是深深地无知的。我们能阐明这部分或那部分为什么发生变异的任何原因,在一百个例子中还不到一个。但是当我们使用比较的方法时,就可以看出同种的变种之间的较小差异,和同属的物种之间的较大差异,都受同样法则的支配。变化了的外界条件一般只会诱发彷徨变异,但有时也会引起直接的和一定的效果;这些效果随着时间的推移可以变成强烈显著的;关于这一点,我们还没有充分的证据。习性在产生体质的特性上;使用在器官的强化上,以及不使用在器官的削弱和缩小上,在许多场合里,都表现出强有力的效果。同源部分有按照同一方式进行变异的倾向,并且有合生的倾向。坚硬部分和外在部分的改变有时能影响较柔软的和内在的部分。当一部分特别发达时,大概它就有向邻近部分吸取养料的倾向;并且构造的每一部分如果被节约了而无损害,它就会被节约掉。早期构造的变化可以影响后来发育起来的部分;许多相关变异的例子,虽然我们还不能理解它们的性质,无疑是会发生的。重复部分在数量上和构造上都易于变异,大概由于这些部分没有为了任何特殊机能而密切专业化,所以它们的变异没有受到自然选择的密切节制。大概由于同样的原因,低等生物比高等生物更易变异,高等生物的整个体制是比较专业化了。残迹器官,由于没有用处,不受自然选择的支配,所以易于变异。物种的性伏——即若干物种从一个共同祖先分出来以后所发生的不同性状——比属的性状更易变异,属的性状遗传已久,且在这一时期内没有发生变异。在这些说明里,我们是指现今还在变异的特殊部分或器官而言,因为它们在近代发生了变异并且由此而有所区别;但我们在第二章里看到,同样的原理也可以应用于所有的个体;因为,如果在一个地区发现了一个属的许多物种——就是说在那里以前曾经有过许多变异和分化,或者说在那里新的物种的类型的制造曾经活跃地进行过——那末在那个地区和在这些物种内,平均上,我们现在可以发现极多的变种。次级性征是高度变异的,这种性征在同群的物种里彼此差异很大。体制中同一部分的变异性,一般曾被利用以产生同一物种中两性间的次级性征的差异,以及同属的若干物种中的种间差异。任何部分或器官,与其近缘物种的同一部分或器官相比较,如果已经发达到相当的大小或异常的状态,那么这些部分或器官必定自该属产生以来已经经历了异常大量的变异;并且由此我们可以理解,为什么它至今还会比<敏感詞>部分有更大的变异;因为变异是一种长久持续的、缓慢的过程,而自然选择在上述情形中还没有充分时间来克服进二步变异的倾向,以及克服重现较少变异状态的倾向。但是,如果具有任何异常发达器官的一个物种,变成许多变异了的后代的祖先——我们认为这一定是一个很缓慢的过程,需要经历长久的时间——在这种情形下,自然选择就会成功地给与这个器官以固定的性状,无论它是按照如何异常方式发达了的。从一个共同祖先遗传了几乎同样体质的物种,当被放在相似的影响之下,自然就有表现相似变异的倾向,或者这些相同的物种偶尔会重现它们的古代祖先的某些性状。虽然新而重要的变异不是由于返祖和
  相似变异而发生的,但此等变异也会增加自然界的美妙而调谐的多样性。
  不论后代和亲代之间的每一轻微差异的原因是什么——每一“差异必有一个原因——我们有理由相信:这是有利差异逐渐而缓慢的积累,它引起了每一物种的构造上的一切较为重要的变异,而这些构造是与习性相关联的。
回复

使用道具 举报

14
 楼主| 发表于 2008-1-20 13:23:13 | 只看该作者
第六章 学说的难点
伴随着变异的生物由来学说的难点——过渡变种的不存在或稀有——生活习性的过渡——同一物种中的分歧习性——具有与近似物种极其不同习性的物种——极端完善的器官——过渡的方式——难点的事例——自然界没有飞跃——重要性小的器官——器官并不在一切情形下都是绝对完善的——自然选择学说所包括的模式统一法则和生存条件法则。
  读者远在读到本书这一部分之前,想来已经遇到了许许多多的难点。有些难点是这样的严重,以致今日我回想到它们时还不免有些踌躇;但是,根据我所能判断的来说,大多数的难点只是表面的,而那些真实的难点,我想,对于这一学说也不是致命的。
  这些难点和异议可以分作以下几类:第一,如果物种是从<敏感詞>物种一点点地逐渐变成的,那末,为什么我们没有到处看到无数的过渡类型呢?为什么物种恰像我们所见到的那样区别分明,而整个自然界不呈混乱状态呢?
  第二,一种动物,比方说,一种具有像蝙蝠那样构造和习性的动物,能够由别种习性和构造大不相同的动物变化而成吗?我们能够相信自然选择一方面可以产生出很不重要的器官,如只能用作拂蝇的长颈鹿的尾巴,另一方面,可以产生出像眼睛那样的奇妙器官吗?
  第三,本能能够从自然选择获得吗?自然选择能够改变它吗?引导蜜蜂营造蜂房的本能实际上出现在学识渊博的数学家的发见之前,对此我们应当做何解说呢?
  第四,对于物种杂交时的不育性及其后代的不育性,对于变种杂交时的能育性的不受损害,我们能够怎样来说明呢?
  前二项将在这里讨论;<敏感詞>种种异议在下一章讨论;本能和“杂种状态”(bybridism)在接下去的两章讨论。
  论过渡变种的不存在或稀有——因为自然选择的作用仅仅在于保存有利的变异,所以在充满生物的区域内,每一新的类型都有一种倾向来代替并且最后消灭比它自己改进较少的亲类型以及与它竞争而受益较少的类型。因此绝灭和自然选择是并肩进行的。所以,如果我们把每一物种都看作是从某些未知类型传下来的,那末它的亲种和一切过渡的变种,一般在这个新类型的形成和完善的过程中就已经被消灭了。
  但是,依照这种理论,无数过渡的类型一定曾经存在过,为什么我们没有看到它们大量埋存在地壳里呢?在《论地质纪录的不完全》一章里来讨论这一问题,将会更加便利;我在这里只说明,我相信关于这一问题的答案主要在于地质纪录的不完全实非一般所能想像到的。地壳是一个巨大的博物馆;但自然界的采集品并不完全,而且是在长久的间隔时期中进行的。但是,可以主张,当若干亲缘密切的物种栖息在同一地域内时,我们确实应该在今日看到许多过渡类型才对。举一个简单的例子:当在大陆上从北往南旅行时,我们一般会在各段地方看到亲缘密切的或代表的物种显然在自然组成里占据者几乎相同的位置。这些代表的物种常常相遇而且相混合;当某一物种逐渐少下去的时候,另一物种就会逐渐多起来,终于这一个代替了那一个。但如果我们在这些物种相混的地方来比较它们,可以看出它们的构造的各个细点一般都绝对不同,就像从各个物种的中心栖息地点采集来的标本一样。按照我的学说,这些近缘物种是从一个共同亲种传下来的;在变异的过程中,各个物种都已适应了自己区域里的生活条件,并已排斥了和消灭了原来的亲类型以及一切连接过去和现在的过渡变种。因此,我们不应该希望今日在各地都遇到无数的过渡变种,虽然它们必定曾经在那里存在过,并且可能以化石状态在那里埋存着。但是在具有中间生活条件的中间地带,为什么我们现在没有看到密切连接的中间变种呢?这一难点在长久期间内颇使我惶惑,但是我想,它大体是能够解释的。
  第一,如果我们看到一处地方现在是连续的,就推论它在一个长久的时期内也是连续的,对此应当十分慎重。地质学使我们相信:大多数的大陆,甚至在第三纪末期也还分裂成一些岛屿;在这样的岛屿上没有中间变种在中间地带生存的可能性,不同的物种大概是分别形成的。由于陆地的形状和气候的变迁,现在连续的海面在最近以前的时期,一定远远不像今日那样的连续和一致。但是我将不取这条道路来逃避困难;因为我相信许多界限十分明确的物种是在本来严格连续的地面上形成的;虽然我并不怀疑现今连续地面的以前断离状态,对于新种形成,特别对于自由杂交而漫游的动物的新种形成,有着重要作用。
  我们观察一下现今在一个广大地域内分布的物种,我们一般会看到它们在一个大的地域内是相当多的,而在边界处就多少突然地逐渐稀少下来,最后终于消失了。因此,两个代表物种之间的中间地带比起每个物种的独占地带,一般总是狭小的。在登山时我们可以看到同样的事实,有时正如得康多尔所观察的那样,一种普通的高山植物非常突然地消失了,这是十分值得注意的。福布斯在用捞网探查深海时,也曾注意到同样的事实。有些人把气候和物理的生活条件看作是分布的最重要困素,这等事实应该引起那些人们的惊异,因为气候和高度或深度都是不知不觉地逐渐改变的。但是如果我们记得几乎每一物种,甚至在它分布的中心地方,倘使没有与它竞争的物种,它的个体数目将增加到难以数计;如果我们记得几乎一切物种,不是吃别的物种便是为别的物种所吃掉;总而言之,如果我们记得每一生物都与别的生物以极重要的方式直接地或间接地发生关系,——那末我们就会知道,任何地方的生物分布范围决不完全决定于不知不觉地变化着的物理条件,而是大部分决定于<敏感詞>物种的存在,或者依赖<敏感詞>物种而生活,或者被<敏感詞>物种所毁灭,或者与<敏感詞>物种相竞争;因为这些物种都已经是区别分明的实物,没有被不可觉察的各级类型混淆在一起,于是任何一个物种的分布范围,由于依存于<敏感詞>物种的分布范围,其界限就会有十分明显的倾向。还有,各个物种,在其个体数目生存较少的分布范围的边缘上,由于它的敌害、或它的猎物数量的变动,或季候性的变动,将会极其容易地遭到完全的毁灭;因此,它的地理分布范围的界限就愈加明显了。因为近似的或作表的物种,当生存在一个连续的地域内时,各个物种都有广大的分布范围,它们之间有着一个比较狭小的中间地带,在这个地带内,它们会比较突然地愈来愈稀少;又因为变种和物种没有本质上的区别,所以同样的法则大概可以应用于二者;如果我们以一个栖息在广大区域内的正在变异中的物种为例,那末势必有两个变种适应于两个大区域,并且有第三个变种适应于狭小的中间地带。结果,中间变种由于栖息在一个狭小的区域内,它的个体数目就较少;实际上,据我所能理解的来说,这一规律是适合于自然状态下的变种的,关于藤壶属(Balanus)里的显著变种的中间变种,我看到这一规律的显著例子。沃森先生、阿萨·格雷博士和沃拉斯顿先生给我的材料表明,当介于二个类型之间的中间变种存在的时候,这个中间变种的个体数目一般比它们所连接的那二个类型的数目要少得多。现在,如果我们可以相信这些事实和推论,并且断定介于二个变种之间的变种的个体数目,一般比它们所连接的类型较少的话,那末,我们就能够理解中间变种为什么不能在很长久的期间内存续:——按照一般规律,中间变种为什么比被它们原来所连接的那些类型绝灭和消失得早些。
  那是因为,如前所述,任何个体数目较少的类型,比个体数目多的类型,会遇到更大的绝灭机会;在这种特殊情形里,中间类型极容易被两边存在着的亲缘密切的类型所侵犯,但还有更加重要的理由:在假定两个变种改变而完成为两个不同物种的进一步变异过程中,个体数目较多的两个变种,由于栖息在较大的地域内,就比那些栖息在狭小中间地带内的个体数目较少的中间变种占有强大优势。这是因为个体数目较多的类型,比个体数目较少的类型,在任何一定的时期内,都有较好的机会,呈现更有利的变异,以供自然选择的利用。因此,较普通的类型,在生活的竞争里,就有压倒和代替较不普通的类型的倾向,因为后者的改变和改良是比较缓慢一些的。我相信,如第二章所指出的,这一同样的原理也可以说明为什么每一地区的普通物种比稀少的物种平均能呈现较多的特征显著的变种。我可以举一个例子来说明我的意思,假定饲养着三个绵羊变种,一个适应于广大的山区;一个适应于比较狭小的丘陵地带;第三个适应于广阔的平原;假定这三处的居民都有同样的决心和技巧,利用选择来改良它们的品种;在这种情形下,拥有多数羊的山区或平原饲养者,将有更多的成功机会,他们比拥有少数羊的狭小中间丘陵地带饲养者在改良品种上要较快些;结果,改良的山地品种或平原品种就会很快地代替改良较少的丘陵品种;这样,本来个体数目较多的这两个品种,便会彼此密切相接,而没有那被代替的丘陵地带中间变种夹在其中。
  总而言之,我们相信物种终究是界限相当分明的实物,在任何一个时期内,不会由于无数变异着的中间连锁而呈现不可分解的混乱:第一,因为新变种的形成是很缓慢的,这由于变异就是一个缓慢的过程,如果没有有利的个体差异或变异发生,自然选择就无所作为;同时在这个地区的自然机构中如果没有空的位置可以让一个或更多改变的生物更好地占据,自然选择也无所作为。这样的新位置决定于气候的缓慢变化或者决定于新生物的偶然移入,并且更重要的,可能决定于某些旧生物的徐缓变异;由于后者产生出来的新类型,便和旧类型互相发生作用和反作用。所以在任何一处地方,在任何一个时候,我们应该看到只有少数物种在构造上表现着多少稳定的轻微变异;这的确是我们看到的情形。第二,现在连续的地域,在过去不久的时期一定常常是隔离的部分,在这些地方,有许多类型,特别属于每次生育须进行交配和漫游甚广的那些类型,大概已经分别变得十分不同,足以列为代表物种。在这种情形里,若干代表物种和它们的共同祖先之间的中间变种,先前在这个地区的各个隔离部分内一定曾经存在过,但是这些连锁在自然选择的过程中都已被排除而绝灭,所以现今就看不到它们的存在了。
  第三,如有两个或两个以上的变种在一个严密连续地域的不同部分被形成了,那末在中间地带大概有中间变种的形成,但是这些中间变种一般存在的时间不长,因为这些中间变种,由于已经说过的那些理由(即由于我们所知道的亲缘密切的物种或代表物种的实际分布情形,以及公认的变种的实际分布情形),生存在中间地带的个体数量比被它们所连接的变种的个体数量要少些。单从这种原因来看,中间变种就难免绝灭;在通过自然选择进一步发生变异的过程中,它们几乎一定要被它们所连接的那些类型所压倒和代替;因为这些类型的个体数量较多,在整体中有更多的变异,这样便能通过自然选择得到进一步的改进,而迸一步占有更大的优势。
  最后,不是通过任何一个时期,而是通过所有时期来看,如果我的学说是真实的,那末无数中间变种肯定曾经存在过,而把同群的一切物种密切连接起来,但是正如前面已经屡次说过的,自然选择这个过程,常常有使亲类型和中间变种绝灭的倾向。结果,它们曾经存在的证明只能见于化石的遗物中,而这些化石的保存,如我们在以后的一章里所要指出的,是极不完全而且间断的。
  论具有特殊习性和构造的生物之起源和过渡——反对我的意见的人曾经问道:比方说,一种陆栖食肉动物怎样能够转变成具有水栖习性的食肉动物;这动物在它的过渡状态中怎么能够生活?不难阐明,现今有许多食肉动物呈现着从严格的陆栖习性到水栖习性之间密切连接的中间各级;并且因为各动物必须为生活而斗争才能生存,所以明显地,各动物一定要很好适应它在自然界中所处的位置。试看北美洲的水貂(Mustela vison),它的脚有蹼,它的毛皮、短腿以及尾的形状都像水獭。在夏季这种动物为了捕鱼为食,在水中游泳,但在悠长的冬季,它离开冰冻的水,并且像<敏感詞>鼬鼠(pole-cats)一样,捕鼷鼠和别种陆栖动物为食。如果用另一个例子来问:一种食虫的四足兽怎样能够转变成能飞的蝙幅?对于这个问题的答复要难得多。然而据我想,这个难点的重要性并不大。
  在这里,正如在<敏感詞>场合,我处于严重不利的局面,因为从我搜集的许多明显事例里,我只能举出一两个,来说明近似物种的过踱习性和构造;以及同一物种中无论恒久的或暂时的多种习性。依我看来,像蝙幅这种特殊的情况,非把过渡状态的事例列成一张长表,似乎不足以减少其中的困难。
  我们看一看松鼠科;有的种类,其尾巴仅仅稍微扁平,还有一些种类,如理查森爵士(Sir J.Richardson)所论述过的,其身体后部相当宽阔、两胁的皮膜开张得相当充满,从这些种类开始,一直到所谓飞鼠,中间有分别极细的诸级;飞鼠的四肢甚至尾的基部,都被广阔的皮膜连结在一起,它的作用就像降落伞那样,可以让飞鼠在空中从这树滑翔到那树,其距离之远实足惊人。我们不能怀疑,每一种构造对于每一种松鼠在其栖息的地区都各有用处,它可以使松鼠逃避食肉鸟或食肉兽,可以使它们较快地采集食物,或者,如我们有理由可以相信的,可以使他们减少偶然跌落的危险。然而不能从这一事实就得出结论说,每一种松鼠的构造在一切可能条件下都是我们所可能想像到的最好的构造。假使气候和植物变化了,假使与它竞争的<敏感詞>啮齿类或新的食肉动物迁移进来了,或者旧有的食肉动物变异了,如此类推下去,将会使我们相信,至少有些松鼠要减少数量,或者绝灭,除非它们的构造能以相应的方式进行变异和改进,所以,特别是在变化着的生活条件下,那些肋旁皮膜愈张愈大的个体将被继续保存下来,在这个问题上,我看是没有什么难点的,它的每一变异都是有用的,都会传衍下去,因了这种自然选择过程的累积效果,终于会有一种完全的所谓飞鼠产生出来。
  现在看一看猫猴类(Ga1eopithecus),即所谓飞狐猴的,先前它曾被放在蝙蝠类中,现在相信它是属于食虫类(Insectivora)的了。它那肋旁极阔的皮膜,从额角起一直延伸到尾巴,把生着长指的四肢也包含在内了,这肋旁的皮膜还生有伸张肌。现在虽然还没有适于在空中滑翔的构造的各级连锁把猫猴类与<敏感詞>食虫类连结起来,然而不难想像,这样的连锁先前曾经存在过,而且各自像滑翔较不完全的飞鼠那样地发展起来的;各级构造对于它的所有者都曾经有过用处。我觉得也没有任何不能超越的难点来进一步相信,连接猫猴类的指头与前臂的膜,由于自然选择而大大地增长了;这一点,就飞翔器官来讲,就可以使那动物变成为蝙蝠。在某些蝙蝠里,翼膜从肩端起一直延伸到尾巴,并且把后腿都包含在内,我们大概在那里呵以看到一种原来适于滑翔而不适于飞翔的构造痕迹。
  假如有十二个属左右的鸟类绝灭了,谁敢冒险推测,只把它们的翅膀用作击水的一些鸟,如大头鸭(MicropteruS of Eyton);把它们的翅膀在水中当作鳍用,在陆上当作前脚用的一些鸟,如企鹅;把它们的翅膀当作风篷用的一些鸟,如鸵鸟;以及翅膀在机能上没有任何用处的一些鸟,如几维鸟(Apteryx),曾经存在过呢?然而上述每一种鸟的构造,在它所处的生活条件下,都是有用处的,因为每一种鸟都势必在斗争中求生存;但是它在一切可能条件下并不一定都是最好的,切勿从这些话去推论,这里所讲的各级翅膀的构造(它们大概都由于不使用的结果),都表示鸟类实际获得完全飞翔能力所经过的步骤;但是它们足以表示有多少过渡的方式至少是可能的。
  看到像甲壳动物(Crustacea)和软体动物(MolluSca)这些在水中呼吸的动物的少数种类可以适应陆地生活;又看到飞鸟、飞兽,许多样式的飞虫,以及先前曾经存在过的飞爬虫,那未可以想像那些依靠鳍的拍击而稍稍上升、旋转和在空中滑翔很远的飞鱼,大概是可以变为完全有翅膀的动物的。如果这种事情曾经发生,谁会想像到,它们在早先的过渡状态中是大洋里的居住者呢?而且它们的初步飞翔器官是专门用来逃脱别种鱼的吞食的呢?(据我们所知,它是这样的。)
  如果我们看到适应于任何特殊习性而达到高度完善的构造,如为了飞翔的鸟翅,我们必须记住,表现有早期过渡各级的构造的动物很少会保留到今日,因为它们会被后继者所排除,而这些后继者正是通过自然选择逐渐变为愈益完善的。进一步我们可以断言,适于不同生活习性的构造之间的过渡状态,在早期很少大量发展,也很少具有许多从属的类型。这样,我们再回到假想的飞鱼例子,真正会飞的鱼,大概不是为了在陆上和水中用许多方法以捕捉许多种类的食物,而在许多从属的类型里发展起来,直到它们的飞翔器官达到高度完善的阶段,使得它们在生活斗争中能够决定性地胜过<敏感詞>动物时,它们才能发展起来。因此,在化石状态中发见具有过渡各级构造的物种的机会总是少的,因为它们的个体数目少于那些在构造上充分发达的物种的个体数目。
  现在我举两三个事例来说明同种的诸个体间习性的分歧和习性的改变。在二者之中的任何一种情形里,自然选择都能容易地使动物的构造适应它的改变了的习性,或者专门适应若干习性中的一种习性。然而难以决定的是,究竟习性一般先起变化而构造随后发生变化呢,还是构造的稍微变化引起了习性的变化呢?但这些对于我们并不重要。大概两者差不多常是同时发生的。关于改变了的习性的情形,只要举出现在专吃外来植物或人造食物的许多英国昆虫就足够了。关于分歧了的习性,有无数例子可以举出来:我在南美洲常常观察一种暴戾的鹟(Saurophagus sulphuratus),它它像一只茶隼(Kestrel)似地翱翔于一处,复至他处,此外的时间它静静地立在水边,于是像翠鸟(Kingfisher)似地冲入水中扑鱼。在英国,有时可以看到大茬雀(Paurs inajor)几乎像旋木雀(creeper)似地攀行枝上;它有时又像伯劳(shrike)似地啄小鸟的头部,
  把它们弄死,我好多次看见并且听到,它们像鳾(nuthatch)似地,在枝上啄食紫杉(yew)的种籽。赫恩(Hearne)在北美洲看到黑熊大张其嘴在水里游泳数小时,几乎像鲸鱼似地,捕捉水中的昆虫。
  我们有时候既然看到一些个体具有不同于同种和同属异种所固有的习性,所以我们可以预期这些个体大概偶尔会产生新种,这些新种具有异常的习性,而且它们的构造轻微地或者显著地发生改变,不同于它们的构造模式。自然界里是有这样的事例的。啄木鸟攀登树木并从树皮的裂缝里捉捕昆虫,我们能够举出比这种适应性更加动人的例子吗?然而在北美洲有些啄木鸟主要以果实为食物,另有一些啄木鸟却生着长翅而在飞行中捉捕昆虫。在拉普拉他平原上,几乎没有生长一株树,那里有一种啄木鸟叫平原鴷(Colaptes campestris),它的二趾向前,二趾向后,舌长而尖,尾羽尖细而坚硬,足以使它在一个树干上保持直立姿势,但不及典型啄木鸟的尾羽那样坚硬,并且它还有直而强的嘴,然而它的嘴不及典型啄木鸟的嘴那样地直或强,但也足以在树木上穿孔。因此,这种鸟,在构造的一切主要部分上,是一种啄木鸟。甚至像那些不重要的性状,如羽色、粗糙的音调、波动式的飞翔,都明白表示了它们与英国普通啄木鸟的密切的血缘关系;但是根据我自己的观察,以及根据亚莎拉的精确观察,我可以断定,在某些大的地区内,它不攀登树木,并且在堤岸的穴洞中做窠!然而在某些别的地方,据赫德森先生(Mr.Hudson)说,就是这种同样的啄木鸟常往来树间,并在树干上凿孔做窠。我可以举出另一个例子来说明这一属的习性改变的情况,根据得沙苏尔(De Saussure)的描述,有一种墨西哥的啄木鸟在坚硬的树木上打孔,以贮藏橡树果实(acorn)。
  海燕(petrels)是最具空中性和海洋性的鸟,但是在火地的恬静海峡间有一种名叫水雉鸟(Puffinuria berardi)的,在它的一般习性上,在它的惊人的潜水力上,在它的游泳和起飞时的飞翔姿态上,都会使任何人把它误为海乌(auk)或水壶卢(grebe)的;尽管如此,它在本质上还是一种海燕,但它的体制的许多部分已经在新的生活习性的关系中起了显著的变异;而拉普拉他的啄木乌在构造上仅有轻微的变异。关于河乌(Water-ouzel),最敏锐的观察者根据它的尸体检验,也决不会想像到它有半水栖的习性;然而这种与鸫科近似的鸟却以潜水为生,——它在水中使用翅膀,用两脚抓握石子。膜翅类这一大目的一切昆虫,除了卵蜂属(Proctotrupes),都是陆栖性的,卢伯克爵士曾发见卵蜂属有水栖的习性;它常常进入水中,不用脚而用翅膀,到处潜游,它在水面下能逗留四小时之久;然而它的构造并不随着这种变常的习性而发生变化。
  有些人相信各种生物一创造出来就像今日所看到的那样,他们如果遇到一种动物的习性与构造不相一致时,一定常常要觉得奇怪。鸭和鹅的践脚的形成是为了游泳,还有什么比此事更为明显的呢?然而产于高地的鹅,虽然生着蹼脚,但它很少走近水边,除却奥杜旁(Audubon)外,没有人看见过四趾都有蹼的军舰鸟(friga-te-bird)会降落在海面上的。另一方面,水壶卢和水姑丁(coots)都是显著的水栖鸟,虽然它们的趾仅在边缘上生着膜。涉禽类(Gra11atores)的长而无膜的趾的形成,是为了便于在沼泽地和浮草上行走,还有比此事更为明显的吗?——鷭(water-hen)和陆秧鸡(landrail)都属于这一目,然而前者几乎和水姑丁一样是水栖性的,后者几乎和鹌鹑(quail)或鹧鸪(partridge)一样是陆栖性的。在这些例子以及<敏感詞>能够举出的例子里,都是习性已经变化而构造并不相应地变化。高地鹅的蹼脚在机能上可以说已经变得几乎是残迹的了,虽然在其构造上井非如此。军舰鸟的趾间深凹的膜,表明它的构造已开始变化了。
  相信生物是分别而无数次地被创造出来的人会这样说,在这些例子里,是因为造物主喜欢使一种模式的生物去代替别种模式的生物;但在我看来这只是用庄严的语言把事实重说一遍罢了。相信生存斗争和自然选择原理的人,则会承认各种生物都不断在努力增多个体数目,并且会承认任何生物无论在习性上或构造上只要发生很小的变异,就能较同一地方的别种生物占有优势,而攫取那一生物的位置,不管那个位置与它自己原来的位置有多大的不同。这样,他就不会对下面的事实感到奇怪了:具有蹼脚的鹅和军舰鸟,生活于干燥的陆地面很少降落在水面上;具有长趾的秧鸡,生活于草地而不生活于泽地上;啄木鸟生长在几乎没有树木的地方;以及潜水的鸫、潜水的膜翅类和海燕具有海鸟的习性。
回复

使用道具 举报

15
 楼主| 发表于 2008-1-20 13:29:05 | 只看该作者
极端完善的和复杂的器官

  眼睛具有不能模仿的装置,可以对不同距离调节其焦点,容纳不同量的光和校正球面的和色彩的像差和色差,如果假定眼睛能由自然选择而形成,我但白承认,这种说法好像是极其荒谬的。当最初说太阳是静止的,而地球环绕着太阳旋转的时候,人类的常识曾经宣称这一学说是错误的;但是像各个哲学家所知道的“民声即天声”这句古谚,在科学里是不能相信的。理性告诉我,如果能够示明从简单而不完全的眼睛到复杂而完全的眼睛之间有无数各级存在,并且像实际情形那样地每级对于它的所有者都有用处;进而如果眼睛也像实际情形那样地曾经发生过变异,并且这些变异是能够遗传的;同时如果这些变异对于处在变化着的外界条件下的任何动物是有用的;那末,相信完善而复杂的眼睛能够由自然选择而形成的难点,虽然在我们想像中是难以克服的,却不能被认为能够颠覆我的学说。神经怎样对光有感觉,正如生命本身是怎样起源的一样,不是我们研究的范围。但我可以指出,有些最低级的生物,在它们体内并不能找到神经,也能够感光,因此,在它们原生质(sarcode)里有某些感觉元素聚集起来,而发展为具有这种特殊感觉性的神经,似乎并非是不可能的。
  在探求任何一个物种的器官所赖以完善化的诸级时,我们应当专门观察它的直系祖先;但这几乎是不可能的,于是我们便不得不去观察同群中的别的物种和别的属,即去观察共同始祖的旁系,以便看出在完善化过程中有哪些级是可能的,也许还有机会看出遗传下来的没有改变或仅有小小改变的某些级。但是,不同纲里的同一器官的状态,对于它达到完善化所经过的步骤有时也会提供若干说明。
  能够叫作眼睛的最简单器官,是由一条视神经形成的,它被色素细胞环绕着、并被半透明的皮膜遮盖着,但它没有任何晶状体或<敏感詞>折射体。然而根据乔丹(M.Jourdain)的研究,我们甚至可以再往下降一步,可以看到色素细胞的集合体,它分明是用作视觉器官的,但没是任何神经,只是着生在肉胶质的组织上面。上述这种简单性质的眼睛,不能明白地看见东西,只能够用来辨别明暗。据方才所提到的作者的描述,在某些星鱼里,围绕神经的色素层有小的凹陷,里面充满着透明的胶质,表面凸起,好像高等动物里的角膜。他认为这不是用来反映形象的,只不过把光线集中,使它的感觉更容易一些罢了。在这种集中光线的情形里,我们得到向着形成真的、能够反映形象的眼睛的最初甚至最重要的步骤;因为只要把视神经的裸露一端(在低等动物中,视神经的这一端的位置没有一定,有的深埋在体内,有的则接近在体表),安放在与集光器的适当距离之处,便会在这上面形成影像。
  在关节动物(Articulata)这一大纲里,我们可以看到最原始的是单纯被色素层包围着的视神经,这种色素层有时形成一个瞳孔,但没有晶状体或<敏感詞>光学装置。关于昆虫,现在已经知道,巨大的复眼的角膜上有无数小眼,形成真正的晶状体,并且这种晶锥体含有奇妙变异的神经纤维。但是在关节动物里,视觉器官的分歧性是如此之大,以致米勒(Muller)先前曾把它分为三个主要的大类和七个小类,除此之外还有聚生单眼的第四个主要大类。
  如果我们想一想这里很简单讲过的情形,即关于低等动物的眼睛构造的广阔的、分歧的、逐渐分级的范围;如果我们记得一切现存类型的数量比起已经绝灭类型的数量一定少得多,那末就不难相信,自然选择能够把被色素层包围着的和被透明的膜遮盖着的一条视神经的简单装置,改变为关节动物的任何成员所具有的那样完善的视觉器官。
  已经走到此处的人,如果读完本书之后,发现其中的大量事实,不能用别的方法得到解释,只能用通过自然选择的变异学说才可以得到解释,那末,他就应当毫不犹豫地再向前迈进一步;他应当承认,甚至像雕(eagle)的眼睛那样完善的构造也是如此形成的,虽然在这种情形下,他并不知道它的过渡状态,有人曾经反对说,为了要使眼睛发生变化,并且作为一种完善的器官被保存下来,就必须有许多变化同时发生,而据推想,这是不能通过自然选择做到的;但正如我在论家养动物变异的那部著作里所曾企图阐明的,如果变异是极微细而逐渐的,就没有必要假定一切变异都是同时发生的。同时,不同种类的变异也可能为共同的一般目的服务:正如华莱斯先生曾经说过的,“如果一个晶状体具有太短的或大长的焦点,它可以由改变曲度或改变密度来进行调整;如果曲度不规则,光线不能聚集于一点,那末使曲度增加一些规则性,便是一种改进了。所以,虹膜的收缩和眼睛肌肉的运动,对于视觉都不是必要的,不过是使这一器官的构造在任何阶段中得到添加的和完善化的改进而已。”在动物界占最高等地位的脊椎动物里,其眼睛开始时是如此简单,如文昌鱼的眼睛,只是透明皮膜所构成的小囊,其上着生神经并围以色素,除此之外,别无<敏感詞>装置。在鱼类和爬行类里,如欧文曾经说过的:“折光构造的诸级范围是很大的。”按照微尔和(Virchow)的卓见,甚至人类的这种美妙透明晶状体,在胚胎期也是由袋状皮褶中的表皮细胞的堆积而形成的;而玻璃体是由胚胎的皮下组织形成的,这个事实有重要的意义。虽然如此,对于这样奇异的然而并不是绝对完善的眼睛的形成,要达到公正的结论,理性还必须战胜想像;但是我痛感这是很困难的,所以有些人把自然选择原理应用到如此深远而有所踌躇,对此我并不觉得奇怪。
  避免把眼睛和望远镜作比较,几乎是不可能的。我们知道望远镜是由人类的最高智慧经过长久不断的努力而完成的;我们自然地会推论眼睛也是通过一种多少类似的过程而形成的。但这种推论不是专横吗?我们有什么理由可以假定“造物主”也是以人类那样的智慧来工作呢?如果我们必须把眼睛和光学器具作一比较的话,我们就应当想像,它有一厚层的透明组织,在其空隙里充满着液体,下面有感光的神经,并且应当假定这一厚层内各部分的密度缓缓地不断地在改变着,以便分离成不同密度和厚度的各层,这些层的彼此距离各不相同,各层的表面也慢慢地改变着形状。进而我们必须假定有一种力量,这种力量就是自然选择即最适者生存,经常十分注意着透明层的每个轻微的改变;并且在变化了的条件之下,把无论以任何方式或任何程度产生比较明晰一点的映像的每一个变异仔细地保存下来。我们必须假定,这器官的每一种新状态,都是成百万地倍增着;每种状态一直被保存到更好的产生出来之后,这时旧的状态才全归毁灭。在生物体里,变异会引起一些轻微的改变,生殖作用会使这些改变几乎无限地倍增着,而自然选择乃以准确的技巧把每一次的改进都挑选出来。让这种过程百万年地进行着;每年作用于成百万的许多种类的个体;这种活的光学器具会比玻璃器具制造得更好,正如“造物主”的工作比人的工作做得更好一样,难道我们能不相信这一点吗?

  过渡的方式

  倘使能证明有任何复杂器官不是经过无数的、连续的、轻微的变异而被形成的,那末我的学说就要完全破产。但是我还没有发见这种情形。无疑现在有许多器官,我们还不知道它们的过渡中间诸级,如果对于那些干分孤立的物种进行观察时,就更加如此,因为根据我的学说,它的周围的类型已大都绝灭了。或者,我们以一个纲内的一切成员所共有的一种器官做为论题时,也是如此,因为在这种情形里,那器官一定原来是在遥远的时代里形成的,此后,本纲内一切成员才发展起来:为要找寻那器官早先经过的过渡诸级,我们必须观察极古的始祖类型,可是这些类型早已绝灭了。
  我们在断言一种器官可以不通过某一种类的过渡诸级而。形成时,必须十分小心。在低等动物里,可以举出无数的例子来说明同样的器官同时能够进行全然不同的机能;如蜻蜓的幼虫和泥鳅(Cobites),它们的消化管兼营呼吸。消化和排泄的机能。再如水螅(Hydra),它可以把身体的内部翻到外面来,这样,外层就营消化,而营消化的内层就营呼吸了。在这等情形里,自然选择可能使本来营两种机能的器官的全部或一部专营一种机能,如果由此可以得到任何利益的话,于是经过不知不觉的步骤,器官的性质就被大大改变了。我们知道,有许多种植物正常地同时产生不同构造的花;如果这等植物仅仅产生一类的花,那末这一物种的性质就会比较突然地发生大变化。但同一株植物产生的两类花大概原来是由分级极细的步骤分化出来的,这些步骤至今可能在某些少数情形里还在进行着。
  再者,两种不同的器官,或两种形式极不同的同样器官,可以同时在同一个个体里营相同的机能,并且这是极端重要的过渡方法:举一个例子来说明,——鱼类用鳃呼吸溶解在水中的空气,同时用鳔呼吸游离的空气,鳔被富有血管的隔膜分开,并有鳔管(du-ctus pneumaticus)以供给它空气。在植物界中可以举出另外一个例子:植物的攀缘方法有三种,用螺旋状的卷绕,用有感觉的卷须卷住一个支持物,以及用发出的气根;通常是不同的植物群只使用其中的一种方法,但有几种植物兼用两种方法,甚至也有同一个个体同时使用三种方法的。在所有这种情形里,两种器官当中的一个可能容易地被改变和完善化,以担当全部的工作,它在变异的进行中,曾经受到了另一种器官的帮助;于是另一种器官可能为着完全不同的另一个目的而被改变,或者可能整个被消灭掉。
  鱼类的鳔是一个好的例证,困为它明确地向我们阐明了一个高度重要的事实:即本来为了一种目的——漂浮——构成的器官,转变成为了极其不同目的——呼吸——的器官。在某些鱼类里,鳔又为听觉器官的一种补助器。所有生理学者都承认鳔在位置和构造上都与高等脊推动物的肺是同源的或是理想地相似的:因此,没有理由可以怀疑鳔实际上已经变成了肺,即变成一种专营呼吸的器官。
  按照这个观点就可以推论,一切具有真肺的脊椎动物是从一种古代的未知的具有漂浮器即鳔的原始型一代一代地传下来的。这样,正如我根据欧文关于这些器官的有趣描述推论出来的,我们可以理解为什么咽下去的每一点食物和饮料都必须经过气管上的小孔,虽然那里有一种美妙的装置可以使声门紧闭,但它们还有落入肺部去的危险。高等脊椎动物已经完全失去了鳃,——但在它们的胚胎里,颈两旁的裂缝和弯弓形的动脉仍然标志着鳃的先前位置。但现今完全失掉的鳃,大概被自然选择逐渐利用于某一不同的目的,是可以想像的;例如兰陀意斯(Landois)曾经阐明,昆虫的翅膀是从气管发展成的;所以,在这个大的纲里,一度用作呼吸的器官,实际上非常可能已转变成飞翔器官了。
  在考察器官的过渡时,记住一种机能有转变成另一种机能的可能性是非常重要的,所以我愿再举另外一个例子。有柄蔓足类有两个很小的皮褶,我把它叫做保卵系带,它用分泌粘液的方法来把卵保持在一起,一直到卵在袋中孵化。这种蔓足类没有鳃,全身表皮和卵袋表皮以及小保卵系带,都营呼吸。藤壶科即无柄蔓足类则不然,它没有保卵系带,卵松散地置于袋底,外面包以紧闭的壳;但在相当于系带的位置上却生有巨大的、极其褶皱的膜,它与系带和身体的循环小孔自由相通,所有博物学者都认为它有鳃的作用。我想,现在没有人会否认这一科里的保卵系带与别科里的鳃是严格同源的;实际上它们是彼此逐渐转化的。所以,无庸怀疑,原来作为系带的、同时也很轻度地帮助呼吸作用的那两个小皮褶,已经通过自然选择,仅仅由于它们的增大和它们的粘液腺的消失,就转变成鳃了。如果一切有柄蔓足类都已绝灭(而有柄蔓足类所遭到的绝灭远较无柄蔓足类为甚),谁能想到无柄蔓足类里的鳃原本是用来防止卵被冲出袋外的一种器官呢?
  另有一种过渡的可能方式,即是通过生殖时期的提前或延迟。这是最近美国科普教授(Prof.Cope)和<敏感詞>一些人所主张的。现在知道有些动物在还没有获得完全的性状以前就能够在很早的期间生殖;如果这种能力在一个物种里得到彻底发展时,成体的发育阶段可能迟早就要失掉;在这种情形里,特别是当幼体与成体显著不同时,这一物种的性状就要大大地改变和退化。有不少动物的性状直到成熟以后,差不多还在它们的整个生命期中继续进行。例如哺乳动物,头骨的形状随着年龄的增长常有很大的改变,关于这一点,穆里博士(Dr.Murie)曾就海豹举出过一些动人的例子;每个人都知道,鹿愈老角的分枝也愈多,某些鸟愈老羽毛也发展得愈美丽。科普教授说,有些蜥蜴的牙齿形状,随着年龄的增长而有很大的变化,据弗里茨·米勒的记载,在甲壳类里,不仅是许多微小的部分,便是某些重要的部分,在成熟以后还呈显出新的性状。在所有这种例子里,——还有许多例子可以举出,——如果生殖的年龄被延迟了,物种的性状,至少是成年期的性状,就要发生变异;在某些情形里,前期的和早期的发育阶段会很快地结束,而终至消失,也不是不可能的。至于物种是否常常经过或曾经经过这种比较突然的过渡方式,我还没有成熟的意见;不过这种情形如果曾经发生,那末幼体和成体之间的差异,以及成体和老体之间的差异,大概最初还是一步一步地获得的。

  自然选择学说的特别难点

  虽然我们在断言任何器官不能由连续的、细小的、过渡的诸级产生的时候必须极端小心,可是自然选择学说无疑还有严重的难点。
  最严重的难点之一是中性昆虫,它们的构造经常与雄虫和能育的雌虫有所不同;但是关于这种情形将在下章进行讨论,鱼的发电器官提供了另一种特别难以解释的例子;因为不可能想像这等奇异的器官是经过什么步骤产生的。但这也用不到大惊小怪,因为甚至连它有什么用处我们还不知道。在电鳗(Gymnotus)和电鲸(Torpedo)里,没有疑问,这些器官是被用作强有力的防御手段的,或者是用于捕捉食物的;但是在鹞鱼(Ray)里,按照玛得希(Mat-teucci)的观察,尾巴上有一个类似的器官,甚至当它受到重大的刺激时,发电仍然极少;少到大概不足以供上述目的的任何用处。还有,在鹞鱼里,除了刚才所说的器官之外,如麦克唐纳博士(Dr.M’Donnell)曾经阐明的,近头部处还有另一个器官,虽然知道它并不带电,但它似乎是电鯆的发电器的真正同源器官。一般承认这些器官和普通的肌肉之间,在内部构造上、神经分布上和对各种试药的反应状态上都是密切类似的。再者,肌肉的收缩一定伴随着放电,也是应当特别注意的。并且如拉德克利夫博士(Dr.Rad-cliffe)所主张的“电鯆的发电器官在静止时的充电似乎与肌肉和神经在静止时的充电极其相像,电鯆的放电,并没有什么特别,大概只是肌肉和运动神经在活动时放电的另一种形式而已”。除此以外,我们现在还没有<敏感詞>解释;但是因为我们对于这种器官的用处知道的这样少,并且因为我们对于现今生存的电鱼始祖的习性和构造还不知道,所以要来主张不可能有有用的过渡诸级来完成这些器官的逐渐发展,就未免过于大胆了。
  起初看来这些器官好像提供了另一种更加严重的难点;因为发电器官见于约十二个种类的鱼里,其中有几个种类的鱼在亲缘关系上是相距很远的。如果同样的器官见于同一纲中的若干成员,特别是当这些成员具有很不相同的生活习性时,我们一般可以把这器官的存在归因于共同祖先的遗传;并且可以把某些成员不具有这器官归因于通过不使用或自然选择而招致的丧失。所以,如果发电器官是从某一古代祖先遗传下来的,我们大概会预料到一切电鱼彼此都应该有特殊的亲缘关系了;可是事实远非如此。地质学也完全不能令人相信大多数鱼类先前曾有过发电器官,而它们的变异了的后代到现在才把它们失掉。但是当我们更深入地观察这一问题时,就可发见在具有发电器官的若干鱼类里,发电器官是位于身体上的不同部分的,——它们在构造上是不同的,例如电板的排列法的不同,据巴西尼(Pacini)说,发电的过程或方法也是不同的,——最后,通到发电器官的神经来源也是不同的,这大概是一切不同中的最重要的一种了。因此,在具有发电器官的若干鱼类里,不能把这种器官看作是同源的,只能把它们看作是在机能上同功的。结果,就没有理由假定它们是从共同祖先遗传下来的了;因为假使它们有共同的祖先,它们就应该在各方面都是密切相像的。这样,关于表面上相同、实际上却从几个亲缘相距很远的物种发展起来的器官这一难点就消失了,现在只剩下一个较差的然而也还是重大的难点,即在各个不同群的鱼类里,这种器官是经过什么分级的步骤而发展起来的。
  在属于十分不同科的几种昆虫里所看到的位于身体上不同部分的发光器官,在我们缺乏知识的现状下,给予我们一个与发电器官差不多相等的难点。还有<敏感詞>相似的情形;例如在植物里,花粉块生在具有粘液腺的柄上,这种很奇妙的装置,在红门兰属(Or-同一个发明一样,在上述的几种情形里,自然选择为了各生物的利益而工作着,并且利用着一切有利的变异,这样,在不同的生物里,产生出就机能来讲是相同的器官,这些器官的共同构造并不能归因于共同祖先的遗传。
  弗里茨·米勒为了验证本书所得到的结论,很慎重地进行了差不多相同的议论。在甲壳动物几个科里为少数物种,具有呼吸空气的器官,适于在水外生活,米勒对其中两个科研究得特别详细,这两科的关系很接近,它们的诸物种的一切重要性状都密切一致:如它们的感觉器官、循环系统、复杂的胃中的丛毛位置、以及营水呼吸的鳃的构造,甚至清洁鳃用的极微小的钩,都是密切一致的。因此,可以预料到,在属于这两个科的营陆地生活的少数物种里,同等重要的呼吸空气器官应当是相同的;因为,一切<敏感詞>的重要器官既密切相似或十分相同,为什么为了同一目的的这一种器官要制造得不同呢?
  米勒根据我的观点,主张构造上这样多方面的密切相似,必须用从一个共同祖先的遗传才能得到解释,但是,因为上述两个科的大多数物种,和大多数<敏感詞>甲壳动物一样,都是水栖习性的,所以如果说它们的共同祖先曾经适于呼吸空气,当然是极不可能的。因此,米勒在呼吸空气的物种里仔细地检查了这种器官;他发见各个物种的这种器官在若干重要之点上,如呼吸孔的位置,开闭的方法,以及<敏感詞>若干附属构造,都是有差异的。只要假定属于不同科的物种慢慢地变得日益适应水外生活和呼吸空气的话,那种差异是可以理解的,甚至大概是可以预料的。因为,这些物种由于属于不同的科,就会有某种程度的差异,并且根据变异的性质依靠两种要素——即生物的本性和环境的性质——的原理,它们的变异性必定不会完全相同。结果,自然选择为要取得机能上的同一结果,就必须在不同的材料即变异上进行工作;这样获得的构造差不多必然是各不相同的。依照分别创造作用的假说,全部情形就不能理解了。这样讨论的路线使米勒接受我在本书里所主张的观点,似乎有很大的分量。
  另一位卓越的动物学家即已故的克莱巴里得教授(Prof·Claparede)曾有过同样的议论,并达到同样的结果。他阐明,属于不同亚科和科的寄生性螨(Acaridae),都生有毛钩。这等器官必定是分别发展成的,因为它们不能从一个共同祖先遗传下来;在若干群里,它们是由前腿的变异,——后腿的变异,——下颚或唇的变异,——以及身体后部下面的附肢为变异,而形成的。
  从上述的情形,我们在全然没有亲缘关系的或者只有疏远亲缘关系的生物里,看到由发展虽然不同而外观密切相似的器官所达到的同样结果和所进行的同样机能。另一方面,用极其多样的方法,可以达到同样的结果,甚至在密切相近的生物里有时也是如此,这是贯穿整个自然界的一个共同规律。鸟类的生着羽毛的翅膀和蝙蝠的张膜的翅膀,在构造上是何等不同;蝴蝶的四个翅,苍蝇的两个翅,以及甲虫的两个鞘翅,在构造上就更加不同了。双壳类(Bivalvc)的壳构造得能开能闭,但从胡桃蛤(Nucula)的长行综错的齿到贻贝(Mussel)的简单的韧带,两壳铰合的样式是何等之多!种籽有由于它们生得细小来散布的,——有由它们的蒴变成轻的气球状被膜来散布的,——有把它们埋藏在由种种不同的部分形成的、含有养分的、以及具有鲜明色泽的果肉内,以吸引鸟类来吃它们而散布的,——有生着许多种类的钩和锚状物以及锯齿状的芒,以便附着走兽的毛皮来散布的,——有生着各种形状和构造精巧的翅和毛,一遇微风就能飞扬来散布的。我再举另一个例子;因为用极其多样的方法而得到相同的结果这一问题是极其值得注意的。某些作者主张,生物几乎好像店里的玩具那样,仅仅为了花样,是由许多方法形成的,但这种自然观并不可信。雌雄异株的植物,以及虽然雌雄同株但花粉不能自然地散落在柱头上的植物,需要某些助力以完成受精作用。有几类受精是这样完成的:花粉粒轻而松散,被风吹荡,单靠机会散落在柱头上;这是可能想像得到的最简单的方法。有一种差不多同样简单然而很不相同的方法见于许多植物中,在那里对称花分泌少数几滴花蜜,因而招引了昆虫的来访;昆虫从花药把花粉带到柱头上去。
  从这种简单的阶段出发,我们可以顺序地看到无数的装置,都为了同样的目的,并且以本质上相同的方式发生作用,但是它们引起了花的各部分的变化。花蜜可贮藏在各种形状的花托内,它们的雄蕊和雌蕊可起很多样式的变化,有时候生成陷井似的装置,有时就因刺激性或弹性而进行巧妙的适应运动。从这样的构造起,一直可以到克鲁格博士(Dr·Cruger)最近描述过的盔兰属(Cory-anthes)那样异常适应的例子。这种兰科植物的唇瓣即其下唇有一部分向内凹陷变成一个大水桶,在它上面有两个角状体,分泌近乎纯粹的水滴,不断地降落在桶内;当这个水桶半满时,水就从一边的出口溢出。唇瓣的基部适在水桶为上方,它也凹陷成一种腔室,两侧有出入口;在这腔室内有奇异的肉质棱。即使最聪明的人,如果他不曾亲自看见有什么情形在那里发生,永远也不会想像到这些部分有什么用处。但克鲁格博士看见成群的大形土蜂去访问这种兰科植物的巨大的花,但它们不是为了吸食花蜜,而是为了咬吃水桶上面腔室内的肉质棱;当它们这样做的时候,常常互相冲撞,以致跌进水桶里,它们的翅膀因此被水浸湿,不能飞起来,便被迫从那个出水口或溢水所形成的通路爬出去。克鲁格博士看见土蜂的“连接的队伍”经过不自愿的洗澡后这样爬出去。那通路是狭隘的,上面盖着雌雄合蕊的柱状体,因此蜂用力爬出去时,首先便把它的背擦着胶粘的柱头,随后又擦着花粉块的粘腺。这样,当土蜂爬过新近张开的花的那条通路时,便把花粉块粘在它的背上,于是把它带走了。克鲁格博士寄给我一朵浸在酒精里的花和一只蜂,蜂是在没有完全爬出去的时候弄死的,花粉块还粘在它的背上。这样带着花粉的蜂飞到另一朵花去,或者第二次再到同一朵花来,并且被同伴挤落在水桶里,然后从那条路爬出去,这时,花粉块必然首先与胶粘的柱头相接触,并且粘在这上面,于是那花便受精了。现在我们已经看到了花的各部分的充分用处,分泌水的角状体的用处,半满水桶的用处——它在于防止蜂飞去,强迫它们从出口爬出去,并且使它们擦着生在适当位置上的胶粘的花粉块和胶粘的柱头。
  还有一个亲缘密切的兰科植物,叫作须蕊柱(Catasetum),它的花的构造,虽然为了同一个目的,却是十分不同的,那花的构造也是同样奇妙的。蜂来访它的花,也像来访盔唇花的花一样,是为着咬吃唇瓣的,当它们这样做的时候,就不免要接触一条长的、细尖的、有感觉的突出物,我把这突出物叫作触角。这触角一经被触到,就传达出一种感觉即振动到一种皮膜上,那皮膜便立刻裂开;由此放出一种弹力,使花粉块像箭一样地射出去,方向正好使胶粘的一端粘在蜂背上。这种兰科柏物是雌雄异株的,雄株的花粉块就这样被带到雌株的花上,在那里碰到柱头,柱头是粘的,其粘力足以裂断弹性丝,而把花粉留下,于是便行受精了。
  可以质问,在上述的以及<敏感詞>无数的例子里,我们怎么能够理解这种复杂的逐渐分级步骤以及用各式各样的方法来达到同样的目的呢?正如前面已经说过的,这答案无疑是:彼此已经稍微有所差异的两个类型在发生变异的时候,它们的变异性不会是完全同一性质的,所以为了同样的一般目的通过自然选择所得到的结果也不会是相同的,我们还应记住:各种高度发达的生物都已经经过了许多变异,并且每一个变异了的构造都有被遗传下去的倾向,所以每一个变异不会轻易地失去,反而会一次又一次地进一步变化。因此,每一个物种的每一部分的构造,无论它为着什么目的服务,都是许多遗传变异的综合物,是这个物种从习性和生活条件的改变中连续适应所得到的。
  最后,虽然在许多情形里,甚至要猜测器官经过什么样的过渡形式而达到今日的状态,也是极其困难的,但是考虑到生存的和已知的类型与绝灭的和未知的类型相比,前者的数量是如此之小,使我感到惊异的,倒是很难举出一个器官不是经过过渡阶段而形成的。好像为了特别目的而创造出来的新器官,在任何生物里都很少出现或者从未出现过,肯定这是真实的;——正如自然史里那句古老的但有些夸张的格言“自然界里没有飞跃”所指出的一样。几乎各个有经验的博物学者的著作都承认这句格言;或者正如米尔恩·爱德华曾经很好他说过的,“自然界”在变化方面是奢侈的,但在革新方面却是吝啬的。如果依据特创论,那么,为什么变异那么多,而真正新奇的东西却这样少呢?许多独立生物既然是分别创造以适合于自然界的一定位置,为什么它们的一切部分和器官,却这样普遍地被逐渐分级的诸步骤连接在一起呢?为什么从这一构造到另一构造“自然界”不采取突然的飞跃呢?依照自然选择的学说,我们就能够明白地理解“自然界”为什么应当不是这样的;因为自然选择只是利用微细的、连续的变异而发生作用;她从来不能采取巨大而突然的飞跃,而一定是以短的、确实的、虽然是缓慢的步骤前进。
回复

使用道具 举报

16
 楼主| 发表于 2008-1-20 13:30:13 | 只看该作者
蒙受自然选择作用的表面不很重要的器官

  因大自然选择是通过生死存亡,——让最适者生存,让比较不适者灭亡,——而发生作用的,所以在理解不很重要的部分的起源或形成的时候,我有时感到很大的困难,其困难之大几乎像理解最完善的和最复杂的器官的情形一样,虽然这是一种很不相同的困难。
  第一,我们对于任何一种生物的全部机构的知识太缺乏,以致不能说明什么样的轻微变异是重要的或是不重要的。在以前的一章里我曾举出过微细性状的一些事例,如果实上的茸毛,果肉的颜色,四足兽的皮和毛的颜色,它们由于与体质的差异相关,或与决定昆虫是否来攻击相关,确实能受自然选择的作用。长颈鹿的尾巴,宛如人造的蝇拂;说它适于现在的用途是经过连续的、微细的变异,每次变异都更适合于像赶掉苍蝇那样的琐事,起初看来,似乎是不能相信的;然而甚至在这种情形里,要作肯定之前亦应稍加考虑,因为我们知道,在南美洲,牛和<敏感詞>动物的分布和生存完全决定于抗拒昆虫攻击的力量;结果,无论用什么方法只要能防避这等小敌害的个体,就能蔓延到新牧场,而获得巨大优势。并不是这些大形的四足兽实际上会被苍蝇消灭(除却一些很少的例外),而是它们连续地被搅扰,体力便会降低,结果,比较容易得病,或者在饥荒到来的时候不能那么有效地找寻食物,或者逃避食肉兽的攻击。
  现在不很重要的器官,在某些情形里,对于早期的祖先大概是高度重要的,这些器官在以前的一个时期慢慢地完善化了之后,虽然现在已经用处极少了,仍以几乎相同的状态传递给现存的物种;但是它们在构造上的任何实际的有害偏差,当然也要受到自然选择的抑止。看到尾巴在大多数水栖动物里是何等重要的运动器官,大概就可以这样去解释它在多数陆栖动物(从肺或变异了的鳔表示出它们的水栖起源)里的一般存在和多种用途。一条充分发达的尾如在一种水栖动物里形成,其后它大概可以有各种各样的用途,——例如作为蝇拂,作为握持器官,或者像狗尾那样地帮助转弯,虽然尾在帮助转弯上用处很小,因为山兔(bare)几乎没有尾巴,却能更加迅速地转弯。
  第二,我们很容易误认某些性状的重要性,并且很容易误信它们是通过自然选择而发展起来的。我们千万不可忽视:变化了的生活条件的一定作用所产生的效果,——似乎与外界条件少有关系的所谓自发变异所产生的效果,——复现久已亡失的性状的倾向所产生的效果,——诸如相关作用、补偿作用、一部分压迫另一部分等等复杂的生长法则所产生的效果,——最后还有性选择所产生的效果,通过这一选择,常常获得对于某一性的有用性状,并能把它们多少完全地传递给另一性,虽然这些性状对于另一性毫无用处。但是这样间接获得的构造,虽然在起初对于一个物种并没有什么利益,此后却会被它的变异了的后代在新的生活条件下和新获得的习性里所利用。
  如果只有绿色的啄木鸟生存着,如果我们不知道还有许多种黑色的和杂色的啄木鸟,我敢说我们一定会以为绿色是一种美妙的适应,使这种频繁往来于树木之间的鸟得以在敌害面前隐蔽自己;结果就会认为这是一种重要的性状,并且是通过自然选择而获得的;其实这颜色大概主要是通过性选择而获得的。马来群岛有一种藤棕搁(trailing palm),它依靠丛生在枝端的构造精致的钩,攀缘那耸立的最高的树木,这种装置,对于这植物无疑是极有用处的;但是我们在许多非攀缘性的树上也看到极相似的钩,并且从非洲和南美洲的生刺物种的分布看来,有理由相信这些钩本来是用作防御草食兽的,所以藤棕榈的刺最初可能也是为着这种目的而发展的,后来当那植物进一步发生了变异并且变成攀缘植物的时候,刺就被改良和利用了。秃鹫(vulture)头上裸出的皮,普通被认为是为了沉溺于腐败物的一种直接适应;也许是这样,或者也许可能是由于腐败物质的直接作用;但是当我们看到吃清洁食物的雄火鸡的头皮也这样裸出时,我们要作任何这样的推论就要很慎重了。幼小哺乳动物的头骨上的缝曾被认为是帮助产出的美妙适应,毫无疑问,这能使生产容易,也许这是为生产所必须的;但是,幼小的鸟和爬虫不过是从破裂蛋壳里爬出来的,而它们的头骨也有缝,所以我们可以推想这种构造的发生系由于生长法则,不过高等动物把它利用在生产上罢了。
  对于每一轻微变异或个体差异的原因,我们是深刻无知的;我们只要想一下各地家养动物品种间的差异,——特别是在文明较低的国家里,那里还极少施用有计划的选择,——就会立刻意识到这一点。各地未开化人所养育的动物还常常须要为自己的生存而斗争,并且它们在某种程度上是暴露在自然选择作用之下的,同时体质稍微不同的个体,在不同的气候下最能得到成功。牛对于蝇的攻击的感受性,犹如对于某些植物的毒性的感受性,与体色相关;所以甚至颜色也是这样服从自然选择的作用的。某些观察者相信潮湿气候会影响毛的生长,而角又与毛相关。高山品种常与低地品种有差异;多山的地方大概对后腿有影响,因为它们在那里使用后腿较多,骨盘的形状甚至也可能因此受到影响;于是,根据同源变异的法则,前肢和头部大概也要受到影响。还有,骨盘的形状可能因压力而影响子宫里小牛的某些部分的形状。在高的地区必需费力呼吸,我们有可靠的理由相信,这使胸部有增大的倾向;而且相关作用在这里又发生了效力。少运动和丰富的食物对于整个体制的影响大概更加重要;冯那修西亚斯(H.von Nathusius)最近在他的优秀的论文里曾阐明,这显然是猪的品种发生巨大变异的一个主要原园。但是我们实在太无知了,以致对于变异的若干已知原因和未知原因的相对重要性无法加以思索;我这样说只在于示明,尽管一般都承认若干家养品种系从一个或少数亲种经过寻常的世代而发生的,但是如果我们不能解释它们的性状差异的原因,那么我们对于真正物种之间的微小的相似差异,还不能了解其真实原因,就不必看得太严重了。

  功利说有多少真实性:美是怎样获得的

  最近有些博物学者反对功利说所主张的构造每一细微之点的产生都是为了它的所有者的利益,前节的论点引导我对于这种反对的说法再略微谈一谈。他们相信许多构造被创造出来,是为了美,使人或“造物主”喜欢(但“造物主”是属于科学讨论范围之外的),或者仅仅是为了增多花样而被创造出来,这种观点已被讨论过。这些理论如果正确,我的学说就完全没有立足余地了。我完全承认,有许多构造现在对于它的所有者没有直接用处,并且对于它们的祖先也许不曾有过任何用处;但这不能证明它们的形成全然为了美或花样。毫无疑问,变化了的外界条件的一定作用,以及前此列举过的变异的各种原因,不管是否由此而获得利益,都能产生效果,也许是很大的效果。但是更加重要的一点理由是,各种生物的体制的主要部分都是由遗传而来的;结果,虽然每一生物确是适于它在自然界中的位置,但是有许多构造与现在的生活习性并没有十分密切的和直接的关系。因此,我们很难相信高地鹅和军舰鸟的蹼脚对于它们有什么特别的用处;我们不能相信在猴子的臂内、马的前腿内、蝙蝠的翅膀内、海豹的鳍脚内,相似的骨对于这些动物有什么特别的用处。我们可以很稳妥地把这些构造归因于遗传。但是蹼脚对于高地鹅和军舰鸟的祖先无疑是有用的,正如蹼脚对于大多数现存的水鸟是有用的一样。所以我们可以相信,海豹的祖先并不生有鳍脚,却生有五个趾的脚,适于走或抓握;我们还可以进一步冒险地相信:猴子、马和蝙蝠的四肢内的几根骨头,基于功利的原则,大概是从这个全纲的某些古代鱼形祖先的鳍内的多数骨头经过减少而发展成的,不过对于以下变化的原因,如外界条件的一定作用、所谓的自发变异、以及生长的复杂法则等等,究竟应当给予多大的衡量,几乎是不可能决定的;但是除却这些重要的例外,我们还可以断言,每一生物的构造今天或过去对于它的所有者总是有些直接或间接的用处的。
  关于生物是为了使人喜欢才被创造得美观的这种信念,——这个信念曾被宣告可以颠覆我的全部学说,——我可以首先指出美的感觉,显然是决定于心理的性质,而与被鉴赏物的任何真实性质无关,并且审美的观念不是天生的或不能改变的。例如,我们看到不同种族的男子对于女人的审美标准就完全不同。如果美的东西全然为了供人欣赏才被创造出来,那末就应该指出,在人类出现以前,地面上的美应当比不上他们登上舞台之后。始新世(Eoceneepoch)的美丽的螺旋形和圆锥形贝壳,以及第二纪(Secondaryperiod)的有精致刻纹的鹦鹉螺化石,是为了人在许多年代以后可以在室中鉴赏它们而被创造出来的吗?很少东西比矽藻的细小矽壳更美观;它们是为了可以放在高倍显微镜下观察和欣赏而被创造出来的吗?矽藻以及<敏感詞>许多东西的美,显然是完全由于生长的对称所致。花是自然界的最美丽的产物:它们与绿叶相映而惹起注目,同时也就使它们显得美观,因此它们就可以容易地被昆虫看到。我做出这种结论,是由于看到一个不变的规律,即,风媒花从来没有华丽的花冠。有几种植物惯于开两种花,一种是开放而有彩色的,以便吸引昆虫;一种是闭合而没有彩色的,没有花蜜,从不受到昆虫的访问。因此,我们可以断言,如果在地球的表面上不曾有昆虫的发展,我们的植物便不会点缀着美丽的花,而只开不美丽的花,如我们在机树、株树、胡桃树、梣树、茅草、菠菜、酸模、荨麻里所看到的那样,它们都由风的助力而受精。同样的论点也完全可以在果实方面应用;成熟的草莓或樱桃既悦目而又适口,——桃叶卫矛(Spindlewood tree)的华丽颜色的果实和枸骨叶冬青树的猩红色的浆果都是美丽的东西,——这是任何人所承认的。但是这种美只供吸引鸟兽之用,使得果实被吞食后,随粪泻出的种籽得以散布开去;我之所以推论这是确实的,是因为不曾发见过下面的法则有过例外:即,埋藏在任何种类的果实里(即生在肉质的或柔软的瓤囊里)的种籽,如果果实有任何鲜明的颜色或者由于黑色或白色而惹起注目,总是这样散布的。
  另一方面,我愿意承认大多数的雄性动物,如一切最美丽的鸟类,某些鱼类、爬行类和哺乳类,以及许多华丽彩色的蝴蝶,都是为着美而变得美的;但这是通过性选择所获得的成果,就是说,由于比较美的雄体曾经继续被雌体所选中,而不是为了取悦于人。鸟类的鸣声也是这样。我们可以从一切这等情形来推论:动物界的大部分在爱好美丽的颜色和音乐的音响方面,都有相似嗜好。当雌体具有像雄体那样的美丽颜色时,——这种情形在鸟类和蝴蝶里并不罕见,其原困显然在于通过性选择所获得的颜色,不只遗传于雄体,而且遗传于两性。最简单形态的美的感觉,——即是从某种颜色、形态和声音所得到一种独特的快乐,——在人类和低于人类的动物的心理里是怎样发展起来的呢,这实在是一个很难解的问题。如果我们追究为什么某种香和味可以给与快感,而别的却给与不快感,这时我们就会遇到同样的困难。在一切这等情形里,习性似乎有某种程度的作用;但是在每个物种的神经系统的构造里,一定还存在着某种基本的原因。
  自然选择不可能使一个物种产生出全然对另一个物种有利的任何变异;虽然在整个自然界中,一个物种经常利用<敏感詞>物种的构造而得到利益。但是自然选择能够而且的确常常产生出直接对别种动物有害的构造,如我们所看到的蝮蛇的毒牙,姬蜂的产卵管——依靠它就能够把卵产在别种活昆虫的身体里。假如能够证明任何一个物种的构造的任何一部分全然为了另一物种的利益而形成,那就要推翻我的学说了,因为这些构造是不能通过自然选择而产生的。虽然在博物学的著作里有许多关于这种成果的叙述,但我不能找到一个这样的叙述是有意义的。人们认为响尾蛇的毒牙系用以自卫和杀害猎物;但某些作者假定它同时具有于自己不利的响器,这种响器会预先发出警告,使猎物警戒起来。这样,我差不多也可相信猫准备纵跳时卷动尾端是为了使命运已经被决定的鼠警戒起来。但更可信的观点是,响尾蛇用它的响器,眼镜蛇膨胀它的颈部皱皮,蝮蛇在发出很响而粗糙的嘶声时把身体胀大,都是为了恐吓许多甚至对于最毒的蛇也会进行攻击的鸟和兽。蛇的后这种行为和母鸡看见狗走近她的小鸡时便把羽毛竖起、两翼张开的原理是一样的。动物设法把它们的敌害吓走,有许多方法,但这里限于篇幅,无法详述。
  自然选择从来不使一种生物产生对于自己害多利少的任何构造,因为自然选择完全根据各种生物的利益并且为了它们的利益而起作用。正如帕利(Paley)曾经说过的,没有一种器官的形成是为了给予它的所有者以苦痛或损害。如果公平地衡量由各个部分所引起的利和害,那末可以看到,从整体来说,各个部分都是有利的。经过时间的推移,生活条件的改变,如果任何部分变为有害的,那么它就要改变;倘不如此,则这种生物就要绝灭,如无数的生物已经绝灭了的一样。
  自然选择只是倾向于使每一种生物与栖息于同一地方的、和它竞争的别种生物一样地完善,或者使它稍微更加完善一些。我们可以看到,这就是在自然状况下所得到的完善化的标准。例如,新西兰的土著生物彼此相比较都是同样完善的;但是在从欧洲引进的植物和动物的前进队伍面前,它们迅速地屈服了。自然选择不会产生绝对的完善,并且就我们所能判断的来说,我们也不曾在自然界里遇见过这样高的标准。米勒曾经说过,光线收差的校正,甚至在最完善的器官如人类的眼睛里,也不是完全的。没有人怀疑过赫姆霍尔兹(Helmholtz)的判断,他强调地描述了人类的眼睛具有奇异的能力之后,又说了以下值得注意的话:“我们发见在这种光学器具里和视网膜上的影像里有不正确和不完善的情形,这种情形不能与我们刚刚遇到的感觉领域内的各种不调和相比较。人们可以说,自然界为了要否定外界和内界之间预存有协调的理论的所有基础,是喜欢积累矛盾的。”如果我们的理性引导我们热烈地赞美自然界里有无数不能模仿的装置,那么这一理性又告诉我们说(纵然我们在两方面都容易犯错误),某些<敏感詞>装置是比较不完善的。我们能够认为蜜蜂的刺针是完善的吗?当它用刺针刺多种敌害的时候,不能把它拔出来,因为它有倒生的小锯齿,这样,自己的内脏就被拉出,不可避免地要引起死亡。
  如果我们把蜜蜂的刺针看作在遥远的祖先里已经存在,原是穿孔用的锯齿状的器具,就像这个大目里的许多成员的情形那样,后来为了现在的目的它被改变了,但没有改变得完全,它的毒素原本是适于别种用处的,例如产生树瘿,后来才变得强烈,这样,我们大概能够理解为什么蜜蜂一用它的刺针就会如此经常地引起自己的死亡:因为,如果从整体来看,刺针的能力对于<敏感詞>生活有用处,虽然可以引起少数成员的死亡,却可以满足自然选择的一切要求的。如果我们赞叹许多昆虫中的雄虫依靠嗅觉的真正奇异能力去寻找它们的雌虫,那么,只为了生殖目的而产生的成千的雄蜂,对于群没有一点<敏感詞>用处,终于被那些劳动而不育的姊妹弄死,我们对此也赞叹吗?也许是难以赞叹的,但是我们应当赞叹后蜂的野蛮的本能的恨,这种恨鼓动它在幼小的后蜂——它的女儿刚产生出来的时候,就把它们弄死,或者自己在这场战斗中死亡;因为没有疑问,这对于群是有好处的;母爱或母恨(幸而后者很少),对于自然选择的坚定原则都是一样的。如果我们赞叹兰科植物和许多<敏感詞>植物的几种巧妙装置,它们据此通过昆虫的助力来受精,那么枞树产生出来的密云一般的花粉,其中只有少数几粒能够碰巧吹到胚珠上去,我们能够认为它们是同等完善的吗?

  提要:自然选择学说所包括的模式统一法则和生存条件法则

  我们在这一章里,已经把可以用来反对这一学说的一些难点和异议讨论过了。其中有许多是严重的;但是,我想在这个讨论里,对于一些事实已经提出了若干说明,如果依照特创论的信条,这些事实是完全弄不清的。我们已经看到,物种在任何一个时期的变异都不是无限的,也没有由无数的中间诸级联系起来,一部分原因是自然选择的过程永远是极其缓慢的,在任何一个时期只对少数类型发生作用;一部分原因是自然选择这一过程本身就包含着先驱的中间诸级不断地受到排斥和绝灭。现今生存于连续地域上的亲缘密切的物种,一定往往在这个地域还没有连续起来并且生活条件还没有从这一处不知不觉地逐渐变化到另一处的时候,就已经形成了。当两个变种在连续地域的两处形成的时候,常有适于中间地带的一个中间变种形成;但依照上述的理由,中间变种的个体数量通常要比它所连接的两个变种为少;结果,这两个变种,在进一步变异的过程中,由于个体数量较多,便比个体数量较少的中间变种占有强大的优势,因此,一般就会成功地把中间变种排斥掉和消灭掉。
  我们在本章里已经看到,要断言极其不同的生活习性不能逐渐彼此转化;譬如断言蝙蝠不能通过自然选择从一种最初只在空中滑翔的动物而形成,我们应该怎样地慎重。
  我们已经看到,一个物种在新的生活条件下可以改变它的习性;或者它可以有多样的习性,其中有些和它的最近同类的习性很不相同。因此,只要记住各生物部在试图生活于任河可以生活的地方,我们就能理解脚上有践的高地鹅、栖居地上的啄木鸟、潜水的鸫和具有海鸟习性的海燕是怎样发生的了。
  像眼睛那样完善的器官,要说能够由自然选择而形成,这足以使任何人踌躇;但是不论何种器官,只要我们知道其一系列逐渐的、复杂的过渡诸级,各各对于所有者都有益处,那未,在改变着的生活条件下,通过自然选择而达到任何可以想像的完善程度,在逻辑上并不是不可能的。在我们还不知道有中间状态或过渡状态的情形里,要断言不能有这些状态曾经存在过,必须极端慎重。因为许多器官的变态阐明了,机能上的奇异变化至少是可能的。例如,鳔显然已经转变成呼吸空气的肺了。同时进行多种不同机能的、然后一部分或全部变为专营一种机能的同一器官;同时进行同种机能的、一种器官受到另一种器官的帮助而完善化的两种不同器官,一定常常会大大地促进它们的过渡。
  我们已经看到,在自然系统中彼此相距很远的两种生物里,供同样用途的并且外表很相像的器官,可以各自独立形成;但是对这等器官仔细加以检查,差不多常常可以发见它们的构造在本质上有所不同;依照自然选择的原理,结果当然是这样。另一方面,为了达到同一目的的构造的无限多样性,是整个自然界的普遍规律;这也是依照同一伟大原理的当然结果。
  在许多情形里,我们实在太无知无识了,以致主张:因为一个部分或器官对于物种的利益极其不重要,所以它的构造上的变异,不能由自然选择而徐徐累积起来。在许多别的情形里,变异大概是变异法则或生长法则的直接结果,与由此获得的任何利益无关。但是,甚至这等构造,后来在新的生活条件下为了物种的利益,也常常被利用,并且还要进一步地变异下去,我们觉得这是可以确信的。我们还可以相信,从前曾经是高度重要的部分,虽然它已变得这样不重要,以致在它的目前状态下,它已不能由自然选择而获得,但往往还会保留着(如水栖动物的尾巴仍然保留在它的陆栖后代里)。
  自然选择不能在一个物种里产生出完全为着另一个物种的利益或为着损害另一物种的任何东西;虽然它能够有效地产生出对于另一物种极其有用的或者甚至不可缺少的,或者对于另一物种极其有害的部分、器官和分泌物,但是在一切情形里,同时也是对于它们的所有者有用的。在生物繁生的各个地方,自然选择通过生物的竞争而发生作用,结果,只是依照这个地方的标准,在生活战斗中产生出成功者。因此,一个地方——通常是较小地方——的生物,常常屈服于另一个地方——通常是较大地方——的生物。园为在大的地方里,有比较多的个体和比较多样为类型存在,所以竞争比较剧烈,这样,完善化的标准也就比较高。自然选择不一定能导致绝对的完善化;依照我们的有限才能来判断,绝对的完善化,也不是随处可以断定的。
  依据自然选择的学说,我们就能明白地理解博物学里“自然界里没有飞跃”这个古代格言的充分意义。如果我们只看到世界上的现存生物,这旬格言并不是严格正确的;但如果我们把过去的一切生物都包括在内,无论已知或未知的生物,这句格言按照这个学说一定是严格正确的了。
  一般承认一切生物都是依照两大法则——“模式统一”和“生存条件”——形成的。模式统一是指同纲生物的、与生活习性十分无关的构造上的基本一致而言。依照我的学说,模式的统一可以用祖先的统一来解释。曾被著名的居维尔所经常坚持的生存条件的说法,完全可以包括在自然选择的原理之内。因为自然选择的作用在于使各生物的变异部分现今适用于有机的和无机的生存条件,或者在于使它们在过去的时代里如此去适应;在许多情形里,适应受到器官的增多使用或不使用的帮助,受到外界生活条件的直接作用的影响,并且在一切场合里受到生长和变异的若干法则所支配。因此,事实上“生存条件法则”乃是比较高级的法则;因为通过以前的变异和适应的遗传,它把“模式统一法则”包括在内了。
回复

使用道具 举报

17
 楼主| 发表于 2008-1-20 13:37:37 | 只看该作者
第七章 对于自然选择学说的种种异议
长寿——变异不一定同时发生——表面上没有直接用处的变异——进步的发展——机能上不大重要的性状最稳定——关于所想像的自然选择无力说明有用构造的初期阶段——干涉通过自然选择获得有用构造的原因——伴随着机能变化的构造诸级——同纲成员的大不相同的器官由一个相同的根源发展而来——巨大而突然的变异之不可信的理由。
  我预备用这一章来专门讨论反对我的观点的各种各样异议,因为这样可以把先前的一些讨论弄得更明白一些;但用不着把所有的异议都加以讨论,因为有许多异议是由未曾用心去理解这个问题的作者们提出的。例如,一位著名的德国博物学者断言我的学说里最脆弱的一部分是我把一切生物都看作不完善的;其实我说的是,一切生物在与生活条件的关系中并没有尽可能地那样完善;世界上许多地方的土著生物让位给外来侵入的生物,阐明了这是事实。纵使生物在过去任何一个时期能够完全适应它们的生活条件,但当条件改变了的时候,除非它们自己也跟着改变,就不能再完全适应了;并且不会有人反对各处地方的物理条件以及生物的数目和种类曾经经历过多次改变。
  最近一位批评家,有些炫耀数学上的精确性,他坚决主张长寿对于一切物种都有巨大的利益,所以相信自然选择的人“便该把他的系统树”依照一切后代都比它们的祖先更长寿那种方式来排列!然而一种二年生植物或者一种低等动物如果分布到寒冷的地方去,每到冬季便要死去;但是由于通过自然选择所得到的利益,它们利用种籽或卵便能年年复生,我们的批评家难道不能考虑一下这种情形吗,最近雷·兰克斯特先生(Mr.E.Ray Lankester)讨论过这个问题,他总结他说,在这个问题的极端复杂性所许可的范围内,他的判断是,长寿一般是与各个物种在体制等级中的标准有关联的,以及与在生殖中和普通活动中的消耗量也是有关联的。这些条件可能大部是通过自然选择来决定的。
  曾经有过这样的议论,说在过去的三千或四千年里,埃及的动物和植物,就我们所知道的,未曾发生过变化,所以世界上任何地方的生物大概也不曾变化过。但是,正如刘易斯先生(Mr.G.H.Lewes)所说的,这种议论未免太过分了,因为刻在埃及的纪念碑上的、或制成木乃伊的古代家养族,虽与现今生存的家养族密切相像,甚至相同;然而一切博物学者都承认这些家养族是通过它们的原始类型的变异而产生出来的。自从冰期开始以来,许多保持不变的动物大概可以作为一个无比有力的例子,固为它们曾经暴露在气候的巨大变化下,而且曾经移徙得很遥远;相反地,在埃及,据我们所知,在过去的数千年里,生活条件一直是完全一致的。自从冰期以来,少起或不起变化的事实,用来反对那些相信内在的和必然的发展法则的人们,大概是有一些效力的,但是用来反对自然选择即最适音生存的学说,却没有任何力量,因为这学说意味着只有当有利性质的变异或个体差异发生的时候,它们才会被保存下来;但这只有在某种有利的环境条件下才能实现。
  著名的古生物学者勃龙,在他译的本书德文版的末尾问道:按照自然选择的原理,一个变种怎么能够和亲种并肩生存呢?如果二者都能够适应稍微不同的生活习性或生活条件,它们大概能够一起生存的;如果我们把多形的物种(它的变异性似乎具有特别性质),以及暂时的变异,如大小,皮肤变白症等等,搁置在一边不谈,<敏感詞>比较稳定的变种,就我所能发见的,一般都是栖息于不同地点的,——如高地或低地,干燥区域或潮湿区域。还有,在漫游广远和自由交配的那些动物里,它们的变种似乎一般都是局限于不同的地区的。
  勃龙还主张不同的物种从来不仅是在一种性状上,而且是在许多部分上都有差异;他并且问道,体制的许多部分怎样由于变异和自然选择常常同时发生变异呢?但是没有必要去想像任何生物的一切部分都同时发生变化。最能适应某种目的的最显著变异,加以前所说的,大概经过连续的变异,即使是轻微的,起初是在某一部分然后在另一部分而被获得的:因为这些变异都是一起传递下来的,所以叫我们看起来好像是同时发展的了。有些家养族主要是由于人类选择的力量,向着某种特殊目的进行变异的,这些家养族对于上述异议提供了最好的回答。看一看赛跑马和驾车马,或者长躯猎狗和獒(mastiff)吧。它们的全部躯体,甚至心理特性都已经被改变了;但是,如果我们能够查出它们的变化史的每一阶段,——最近的几个阶段是可以查出来的,——我们将看不到巨大的和同时的变化,而只是看到首先是这一部分,随后是另一部分轻微地进行变异和改进。甚至当人类只对某一种性状进行选择时,——栽培植物在这方面可以提供最好的例子,——我们必然会看到,虽然这一部分——无论它是花、果实或叶子,大大地被改变了,则几乎一切<敏感詞>部分也要稍微被改变的。这一部分可以归因于相关生长的原理,一部分可以归出于所谓的自发变异。
  勃龙以及最近布罗卡(Broca)提出过更严重的异议,他们说有许多性状看来对于它们的所有者并没有什么用处,所以它们不能受自然选择的影响。勃龙举出不同种的山兔和鼠的耳朵以及尾巴的长度、许多动物牙齿上的珐琅质的复杂皱褶,以及许多类似的情形作为例证,关于植物,内格利(Nageli)在一篇可称赞的论文里已经讨论过这个问题了。他承认自然选择很有影响,但他主张各科植物彼此的主要差异在于形态学的性状,而这等性状对于物种的繁盛看来并不十分重要。结果他相信生物有一种内在倾向,使它朝着进步的和更完善的方向发展。他特别以细胞在组织中的排列以及叶子在茎轴上的排列为例,说明自然选择不能发生作用。我想,此外还可以加上花的各部分的数目,胚珠的位置,以及在散布上没有任何用处的种籽形状等等。
  上述异议颇有力量。尽管如此,第一,当我们决定什么构造对于各个物种现在有用或从前曾经有用时,还应十分小心。第二,必须经常记住,某一部分发生变化时,<敏感詞>部分也会发生变化,这是由于某些不大明白的原因,如:流到一部分去的养料的增加或减少,各部分之间的互相压迫,先发育的一部分影响到后发育的一部分以及<敏感詞>等等,——此外还有我们一些毫不理解的<敏感詞>原因,它们导致了许多相关作用的神秘事例。这些作用,为求简便起见,都可以包括在生长法则这一个用语里。第三,我们必须考虑到改变了的生活条件有直接的和一定的作用,并且必须考虑到所谓的自发变异,在自发变异里生活条件的性质显然起着十分次要的作用。芽的变异——例如在普通蔷薇上生长出苔蔷薇,或者在桃树上生长出油桃,便是自发变异的好例子;但是甚至在这等场合里,如果我们记得虫类的一小滴毒液在产生复杂的树瘿上的力量,我们就不应十分确信,上述变异不是由于生活条件的某些变化所引起的。树液性质的局部变化的结果,对于每一个微细的个体差异,以及对于偶然发生的更显著的变异,必有其某种有力的原因;并且如果这种未知的原因不间断地发生作用,那末这个物种的一切个体几乎一定要发生相似的变异。
  在本书的前几版里,我过低地估计了因自发变异性而起的变异的频度和重要性,现在看起来这似乎是可能的。但是绝不可能把各个物种的如此良好适应于生活习性的无数构造都归功于这个原因,我不能相信这一点。对适应良好的赛跑马或长躯猎狗,在人工选择原理尚未被了解之前,曾使一些前辈的博物学者发出感叹,我也不相信可以用这个原因来进行解释的。
  值得举出例证来说明上述的一些论点。关于我们所假定的各种不同部分和器官的无用性,甚至在最熟知的高等动物里,还有许多这样的构造存在着,它们是如此发达,以致没有人怀疑到它们的重要性,然而它们的用处还没有被确定下来,或者只是在最近才被确定下来。关于这一点,几乎不必要再说了。勃龙既然把若干种鼠类的耳朵和尾巴的长度作为构造没有特殊用途而呈现差异的例子,虽然这不是很重要的例子,但我可以指出,按照薛布尔博士(Dr,Schobl)的意见,普通鼠的外耳具有很多以特殊方式分布的神经,它们无疑是当作触觉器官用的:因此耳朵的长度就不会是不十分重要了。还有,我们就会看到,尾巴对于某些物种是一种高度有用的把握器官;因而它的用处就要大受它的长短所影响。
  关于植物,因为已有内格利的论文,我仅作下列的说明。人们会承认兰科植物的花有多种奇异的构造,几年以前,这些构造还被看作只是形态学上的差异,并没有任何特别的机能;但是现在知道这些构造通过昆虫的帮助,在受精上是极度重要的,并且它们大概是通过自然选择而被获得的。一直到最近没有人会想像到在二型性的或三型性的植物里,雄蕊和雌蕊的不同长度以及它们的排列方法能有什么用处,但我们现在知道这的确是有用处的。
  在某些植物的整个群里,胚珠直立,而在<敏感詞>群里胚珠则倒挂;也有少数植物,在同一个子房中,一个胚珠直立,而另一个则倒挂。这些位置当初一看好像纯粹是形态学的,或者并不具有生理学的意义;但是胡克博士告诉我说,在同一个子房里,有些只有上方的胚珠受精,有些只有下方的胚珠受精;他认为这大概是因为花粉管进入子房的方向不同所致。如果是这样的话,那么胚珠的位置,甚至在同一个子房里一个直立一个倒挂的时候,大概是位置上的任何轻微偏差之选择的结果,由此受精和产生种籽得到了利益。
  属于不同“目”的若干植物,经常产生两种花——一种是开放的、具有普通构造的花,另一种是关闭的、不完全的花。这两种花有时在构造上表现得非常不同,然而在同一株植物上也可以看出它们是相互渐变而来的。普通的开放的花可以营异花受精;并且由此保证了确实得到异花受精的利益。然而关闭的不完全的花也是。显著高度重要的,因为它们只须费极少的花粉便可以极稳妥地产出大量的种籽。刚才已经说过,这两种花在构造上常常不大相同。不完全花的花瓣差不多总是由残迹物构成的,花粉粒的直径也缩小了。在一种柱芒柄花(Ononis columna)里,五本互生雄蕊是残迹的;在堇菜属(Viola)的若干物种里,三本雄蕊是残迹的,其余的二本雄蕊虽然保持着正常的机能,但已大大地缩小。在一种印度堇菜(Violet)里(不知道它的名字,因为在我这里从来没有见过这种植物开过完全的花),三十朵关闭的花中,有六朵花的萼片从五片的正常数目退化为三片。在金虎尾科(Malpigbiaceea)里的某一类中,按照A.得朱西厄(A.de Jussieu)的意见,关闭的花有更进一步的变异,即和萼片对生的五本雄蕊全都退化了,只有和花瓣对生的第六本雄蕊是发达的;而这些物种的普通的花,却没有这一雄蕊存在;花柱发育不全;子房由三个退化为两个。虽然自然选择有充分的力量可以阻止某些花开放,并且可以由于使花闭合起来之后而减少过剩的花粉数量,然而上述各种特别变异,是不能这样来决定的,“而必须认为这是依照生长法则的结果,在花粉减少和花闭合起来的过程中,某些部分在机能上的不活动,亦可纳人生长法则之内。
  “生长法则的重要效果是这样地需要重视,所以我愿再举出另外一些例子,表明同样的部分或器官,由于在同一植株上的相对位置的不同而有所差异。据沙赫特(Schacht)说,西班牙栗树和某些枞树的叶子,其分出的角度在近于水平的和直立的枝条上有所不同。在普通芸香(rue)和某些<敏感詞>植物里,中央或顶端的花常先开,这朵花有五个蕚片和五个花瓣,子房也是五室的;而这些植物的所有<敏感詞>花都是四数的。英国的五福花属(Adoxa),其顶上的花一般只有二个蕚片,而它的<敏感詞>部分则是四数的,周围的花一般具有三个蕚片,而<敏感詞>部分则是五数的。许多聚合花科(Compo-sita)和伞形花科(以及某些<敏感詞>植物)的植物,其外围的花比中央的花具有发达得多的花冠;而这似乎常常和生殖器官的发育不全相关联。还有一件已经提过的更奇妙的事实,即外围的和中央的瘦果或种籽常常在形状、颜色,和<敏感詞>性状上彼此大不相同。在红花属(Carthamus)和某些<敏感詞>聚合花科的植物里,只有中央的瘦果具有冠毛;而在猪菊芭属(Hyoseris)里,同一个头状花序上生有三种不同形状的瘦果。在某些伞形花科的植物里,按照陶施(Tausch)的意见,长在外方的种籽是直生的,长在中央的种籽是倒生的,得康多尔认为这种性状在<敏感詞>物种里具有分类上的高度重要性。布劳恩教授(Prof.Braun)举出延胡索科(Fumariaceae)的一个属,其穗状花序下部的花结卵形的、有棱的、一个种籽的小坚果;而在穗状花序的上部则结披针形的、两个蒴片的、两个种籽的长角果。在这几种情形里,除了为着引起昆虫注目的十分发达的射出花以外,据我们所能判断的看来,自然选择并不能起什么作用,或者只能起十分次要的作用。一切这等变异,都是各部分的相对位置及其相互作用的结果;而且几乎没有什么疑问,如果同一植株上的一切花和叶,像在某些部位上的花和叶那样地都曾蒙受相同的内外条件的影响,那么它们就都会按照同样方式而被改变。
  在<敏感詞>无数的情形里,我们看到被植物学者们认为一般具有高度重要性的构造变异,只发生在同一植株上的某些花,或者发生在同样外界条件下的密接生长的不同植株。因为这等变异似乎对于植物没有特别的用处,所以它们不受自然选择的影响。其原因如何,还不十分明了,甚至不能像上述所讲的最后一类例子,把它们归因于相对位置等的任何近似作用。在这里我只举出少数几个事例。在同一株植物上花无规则地表现为四数或五数,是常见的事,对此我无须再举实例;但是,因为在诸部分的数目很少的情况下,数目上的变异也比较稀少,所以我愿举出下面的例子,据得康多尔说,大红罂粟(Papaver bracteatum)的花,具有二个蕚片和四个花瓣(这是罂粟属的普通形式),或者三个等片和六个花瓣。花瓣在花蕾中的折叠方式,在大多数植物群里都是一个极其稳定的形态学上的性状;但阿萨·格雷教授说,关于沟酸浆属(Mimulus)的某些物种,它们的花的折叠方式,几乎常常既像犀爵床族(Rhin-anthidea)又像金鱼草族(Antirrhinidea),沟酸浆属是属于金鱼草族的。圣提雷尔曾举出下面的例子:芸香科(Rutaceta)具有单一子房,它的一个部类花椒属(Zanthoxylon)的某些物种的花,在同一植株上或甚至同一个圆锥花序上,却生有一个或二个子房。半日花属(Helianthemum)的蒴果,有一室的,也有三室的;但变形半日花,(H.mutabila)则“有一个稍微宽广的薄隔,隔在果皮和胎座之间”。关于肥皂草(Saponaria officinalis)的花,根据马斯特斯博士(Dr.Masters)的观察,它具有缘边胎座和游离的中央胎座。最后,圣提雷尔曾在油连木(Gompbia oleaformis)的分布区域的近南端处,发见两个类型,起初他毫不怀疑这是两个不同的物种,但是后来他看见它们生长在同一灌木上,于是补充说道:“在同一个个体中,子房和花柱,有时生在直立的茎轴上,有时生在雌蕊的基部。”
  我们由此知道,植物的许多形态上的变化可以归因于生长法则和各部分的相互作用,而与自然选择没有关系。但是内格利主张生物有朝着完善或进步发展的内在倾向,根据这一学说,能够说在这等显著变异的场合里,植物是朝着高度的发达状态前进吗?恰恰相反,我仅根据上述的各部分在同一植株上差异或变异很大的这一事实,就可以推论这等变异,不管一般在分类上有多大重要性,而对于植物本身却是极端不重要的。一个没有用处的部分的获得,实在不能说是提高了生物在自然界中的等级;至于上面描述过的不完全的、关闭的花,如果必须引用什么新原理来解释的话,那一定是退化原理,而不是进化原理;许多寄生的和退化的动物一定也是如此。我们对于引起上述特殊变异的原因还是无知的;但是,如果这种未知的原因几乎一致地在长时期内发生作用,我们就可以推论,其结果也会是几乎一致的;并且在这种情形里,物种的一切个体会以同样的方式发生变异。
  上述各性状对于物种的安全并不重要,从这一事实看来,这等性状所发生的任何轻微变异是不会通过自然选择而被累积和增大的。一种通过长久继续选择而发展起来的构造,当对于物种失去了效用的时候,一般是容易发生变异的,就像我们在残迹器官里所看到的那样;因为它已不再受同样的选择力量所支配了。但是由于生物的本性和外界条件的性质,对于物种的安全并不重要的变异如果发生了,它们可以,且显然常常如此,差不多会以同样的状态传递给许多在<敏感詞>方面已经变异了的后代。对于许多哺乳类、鸟类或爬行类,是否生有毛、羽或鳞并不十分重要;然而毛几乎已经传递给一切哺乳类,羽已经传递给一切鸟类,鳞已经传递给一切真正爬行类。凡一种构造,无论它是什么构造,只要为许多近似类型所共有,就被我们看作在分类上具有高度的重要性,结果就常常被假定对于物种具有生死攸关的重要性。固此我便倾向于相信我们所认为重要的形态上的差异——如叶的排列、花和子房的区分、胚珠的位置等等,——起初在许多情形里是以彷徨变异而出现的,以后由于生物的本性和周围条件的性质,以及由于不同个体的杂交,但不是由于自然选择,便迟早稳定下来了;因为,由于这些形态上的性状并不影响物种的安全,所以它们的任何轻微偏差都不受自然选择作用的支配或累积。这样,我们便得到一个奇异的结果,即对于物种生活极不重要的性状对于分类学家却是最重要的;但是,当我们以后讨论到分类的系统原理时,将会看到这决不像初看时那样地矛盾。
  虽然我们没有良好的证据来证明生物体内有一种向着进步发展的内在倾向,然而如我在第四章里曾经企图指出的,通过自然选择的连续作用,必然会产生出向着进步的发展,关于生物的高等的标准,最恰当的定义是器官专业化或分化所达到的程度:自然选择有完成这个目的的倾向,因为器官愈专业化或分化,它们的机能就愈加有效。
  杰出的动物学家米伐特先生最近搜集了我和别人对于华莱斯先生和我所主张的自然选择学说曾经提出来的异议,并且以可称赞的技巧和力量加以解说。那些异议一经这样排列,就成了可怕的阵容;固为米伐特先生并没有计划列举与他的结论相反的各种事实和论点,所以读者要衡量双方的证据,就必须在推理和记忆上付出极大的努力。当讨论到特殊的情形时,米伐特先生把身体各部分的增强使用和不使用的效果放过去不谈,而我经常主张这是高度重要的,并且在《在家养下的变异》里,我相信我比任何<敏感詞>作者都更详细地讨论了这个问题。同时,他还常常认为我没有估计到与自然选择无关的变异,相反地在刚才所讲的著作里,我搜集了很多十分确切的例子,超过了我所知道的任何<敏感詞>著作。我的判断并不一定可靠,但是仔细读过了米伐特先生的书,并且逐段把他所讲的与我在同一题目下所讲的加以比较,于是,我从未这样强烈地相信本书所得出的诸结论具有普遍的真实性,当然,在这样错综复杂的问题里,许多局部的错误是在所不免的。
  米伐特先生的一切异议将要在本书里加以讨论,或者已经讨论过了。其中打动了许多读者的一个新论点是,“自然选择不能说明有用构造的初期各阶段”。这一问题和常常伴随着机能变化的各性状的级进变化密切相关联,例如已在前章的两个题目下讨论过的鳔变为肺等机能的变化;尽管如此,我还愿在这里对米伐特先生提出来的几个例子,选择其中最有代表性的,稍微详级地进行讨论,因为篇幅有限,不能对他所提出的一切都加以讨论。
  长颈鹿,因为身材极高,颈、前腿和舌都很长,所以它的整个构造美妙地适于咬吃树木的较高枝条。因此它能在同一个地方取得<敏感詞>有蹄动物所接触不到的食物;这在饥荒的时候对于它一定大有利益,南美洲的尼亚太牛(Niata cattle)向我们表明,构造上的何等微小差异,在饥荒时期,也会对保存动物的生命造成大的差别。这种牛和<敏感詞>牛类一样都在草地上吃草,只因为它的下颚突出,所以在不断发生的干旱季节里,不能像普通的牛和马那样地在这时期可以被迫去吃树枝和芦苇等等;因此在这些时候,如果主人不去喂饲它们,尼亚太牛就要死去。在讨论米伐特先生的异议以前,最好再一次说明自然选择怎样在一切普通情形里发生作用。人类已经改变了他们的某些动物,而不必注意构造上的特殊之点,如在赛跑马和长躯猎狗的场合里,单是从最快速的个体中进行选择而加以保存和繁育,或者如在斗鸡的场合里,单是从斗胜的鸡里进行选择而加以繁育。在自然状况下,初生状态的长颈鹿也是如此,能从最高处求食的、并且在饥荒时甚至能比<敏感詞>个体从高一英寸或二英寸的地方求食的那些个体,常被保存下来;因为它们能漫游全区以寻求食物的。同种的诸个体,常在身体各部分的比例长度上微有不同,这在许多博物学著作中都有描述,并且在那里举出了详细的测计。这些比例上的微小差异,是由于生长法则和变异法则而发生的,对于许多物种没有什么用处,或者不重要。但是对于初生状态的长颈鹿,如果考虑到它们当时可能的生活习性,情形就有所不同;因为身体的某一部分或几个部分如果比普通的多少长一些的个体,一般就能生存下来。这等个体杂交之后,所留下的后代便遗传有相同的身体特性、或者倾向于按照同样方式再进行变异;至于在这些方面比较不适宜的个体就最容易灭亡。
  我们从这里看出,自然界无需像人类有计划改良品种那样地分出一对一对的个体;自然选择保存并由此分出一切优良的个体,任它们自由杂交,并把一切劣等的个体毁灭掉。根据这种过程——完全相当于我所谓的人类无意识选择——的长久继续,并且无疑以极重要的方式与器官增强使用的遗传效果结合在一起,一种寻常的有蹄兽类,在我看来,肯定是可以转变为长颈鹿的。
  对于这种结论,米伐特先生曾提出两种异议,一种异议是说身体的增大显然需要食物供给的增多,他认为“由此发生的不利益在食物缺乏的时候,是否会抵消它的利益,便很成问题”。但是,因为实际上南非洲确有长颈鹿大群地生存着,并且因为有某些世界上最大的羚羊,比牛还高,在那里群栖着,所以仅就身体的大小来说,我们为什么要怀疑那些像今日一样地遭遇到严重饥荒的中间诸级先前曾在那里存在过呢。在身体增大的各个阶段,能够得到该地<敏感詞>有蹄兽类触及不到而被留下来的食物供应,对于初生状态的长颈鹿肯定是有一些利益的。我们也不要忽视另一事实,即身体的增大可以防御除了狮子以外的差不多<敏感詞>一切食肉兽;并且在靠近狮于时,它的长颈,——愈长愈好,——正如昌西·赖特先生(Mr.Chauncey Wright)所说的可以作为瞭望台之用。正因为这个缘故,所以按照贝克爵士(Sir S.Baker)的说法,要偷偷地走近长颈鹿,比走近任何动物部更困难。长颈鹿又会借着猛烈摇撞它的生着断桩形角的头部,把它的长颈用做攻击或防御的工具。各个物种的保存很少能够由任何一种有利条件来决定,而必须联合一切大的和小的有利条件来决定。
  米伐特先生问道(这是他的第二种异议),如果自然选择有这样大的力量,又如果能向高处咬吃树叶有这样大的利益,那末为什么除了长颈鹿以及颈项稍短的骆驼、原驼(guanaco)和长头驼(macrauchenia)以外,<敏感詞>的任何有蹄兽类没有获得长的颈和高的身体呢?或者说,为什么这一群的任何成员没有获得长的吻呢?因为在南美洲从前曾经有无数长颈鹿栖息过,对于上述问题的解答并不困难,而且还能用一个实例来做极好的解答。在英格兰的每一片草地上,如果有树木生长于其上,我们看到它的低枝条,由于被马或牛咬吃,,而被剪断成同等的高度;比方说,如果养在那里的绵羊,获得了稍微长些的颈项,这对于它们能够有什么利益呢,在每一个地区内,某一种类的动物几乎肯定地能比别种动物咬吃较高的树叶:并且几乎同样肯定地只有这一种类能够通过自然选择和增强使用的效果,为了这个目的而使它的颈伸长。在南非洲,为着咬吃金合欢(acacias)和别种树高枝条的叶子所进行的竞争,一定是在长颈鹿和长颈鹿之间,而不是在长颈鹿和<敏感詞>有蹄动物之间。
  在世界<敏感詞>地方,为什么属于这个“目”的各种动物,未曾得到长的颈或长的吻呢?这是不能明确解答的;但是,希望明确解答这一问题,就像希望明确解答为什么在人类历史上某些事情不发生于这一国却发生于那一国这一类的问题,是同样不合理的。关于决定各个物种的数量和分布范围的条件,我们是无知的;我们甚至不能推测什么样的构造变化对于它的个体数量在某一新地区的增加是有利的。然而我们大体上能够看出关于长颈或长吻的发展的各种原因。触及到相当高处的树叶(并不是攀登,因为有蹄动物的构造特别不适于攀登树木),意味着躯体的大为增大;我们知道在某些地区内,例如在南美洲,大的四足兽特别少,虽然那里的草木如此繁茂;而在南非洲,大的四足兽却多到不可比拟,为什么会这样呢?我们不知道;为什么第三纪末期比现在更适合于它们的生存呢?我们也不知道。不论它的原因是什么,我们却能够看出某些地方和某些时期,会比<敏感詞>地方和<敏感詞>时期,大大有利于像长颈鹿这样的巨大四足兽的发展。
  一种动物为了在某种构造上获得特别而巨大的发展,<敏感詞>若干部分几乎不可避免地也要发生变异和相互适应。虽然身体的各部分都轻微地发生变异,但是必要的部分并不一定常常向着适当的方面和按照适当的程度发生变异。关于我们的家养动物的不同物种,我们知道它们身体的各部分是按照不同方式和不同程度发生变异的;并且我们知道某些物种比别的物种更容易变异。甚至适宜的变异已经发生了,自然选择并不一定能对这些变异发生作用,而产生一种显然对于物种有利的构造。例如,在一处地方生存的个体的数量,如果主要是由于食肉兽的侵害来决定,或者是由于外部的和内部的寄生虫等等的侵害来决定,——似乎常常有这种情形,——那么,这时在使任何特别构造发生变化以便取得食物上,自然选择所起的作用就很小了,或者要大受阻碍。最后,自然选择是一种缓慢的过程,所以为了产生任何显著的效果,同样有利的条件必须长期持续。除了提出这些一般的和含糊的理由以外,我们实在不能解释有蹄兽类为什么在世界的许多地方没有获得很长的颈项或别种器官,以便咬吃高枝上的树叶。
  许多作者曾提出与上面同样性质的异议。在每一种情形里,除了上面所说的一般原因外,或者还有种种原因会干涉通过自然选择获得想像中有利于某一物种的构造。有一位作者问道,为什么鸵鸟没有获得飞翔的能力呢?但是,只要略略一想便可知道,要使这种沙漠之鸟具有在空中运动它们巨大身体的力量,得需要何等多的食物供应。海洋岛(oceanic islands)上有蝙蝠和海豹,然而没有陆栖哺乳类;但是,因为某些这等蝙蝠是特别的物种,它们一定在这等岛上住得很长久了。所以莱尔爵士问道,为什么海豹和蝙蝠不在这些岛上产出适于陆栖的动物呢?并且他举出一些理由来答复这个问题。但是如果变起来,海豹开始一定先转变为很大的陆栖食肉动物;蝙蝠一定先转变为陆栖食虫动物;对于前者,岛上没有可捕食的动物;对于蝙蝠,地上的昆虫虽然可以作为食物,但是它们大部分已被先移住到大多数海洋岛上来的,而具数量很多的爬行类和鸟类吃掉了。构造上的级进变化,如果在每一阶段对于一个变化着的物种都有利,只有在某种特别的条件下才会发生。一种严格的陆栖动物,由于时时在浅水中猎取食物,随之在溪或湖里猎取食物,最后可能变成一种如此彻底的水栖动物,以致可以在大洋里栖息。但海豹在海洋岛上找不到有利于它们逐步再变为陆栖类型的条件。至于蝙蝠,前已说过,为了逃避敌害或避免跌落,大概最初像所谓飞鼠那样地由这树从空中滑翔那树,而获得它们的翅膀;但是真正的飞翔能力一旦获得之后,至少为了上述的目的,决不会再变回到效力较小的空中滑翔能力里去。蝙蝠确像许多鸟类一样,由于不使用,会使翅膀退化缩小,或者完全失去;但是在这种情形下,它们必须先获得单凭后腿的帮助而能在地上跑得很快的本领,以便能够与鸟类或别的地上动物相竞争;而蝙蝠似乎特别不适于这种变化的。上述这等推想无非要指出,在每一阶段上都是有利的一种构造的转变,是极其复杂的事情;并且在任何特殊的情形里没有发生过渡的情况,毫不值得奇怪。
  最后,不止一个作者问道,既然智力的发展对一切动物都有利,为什么有些动物的智力比别的动物有高度的发展呢?为什么猿类没有获得人类的智力呢?对此是可以举出各种各样的原因来的;但都是推想的,并且不能衡量它们的相对可能性,举出来也是没有用处的。对于后面的一个问题,不能够希望有确切的解答,因为还没有人能够解答比这更简单的问题——即在两族未开化人中为什么一族的文化水平会比另一族高呢;文化提高显然意味着脑力的增加。
  我们再回头谈谈米伐特先生的<敏感詞>异议。昆虫常常为了保护自己而与各种物体类似,如绿叶或枯叶、枯枝、一片地衣、花、棘刺、鸟粪以及别种活昆虫:但关于最后一点留在以后再讲。这种类似经常是奇异地真切,并不限于颜色,而且及于形状,甚至昆虫支持它的身体的姿态。在灌木上取食的尺蠖,常常把身子峤起、一动也不动地像一条枯枝,这是这一种类似的最好事例。模拟像鸟粪那样物体的情形是少有的,而且是例外的。关于这一问题,米伐特先生说道:“按照达尔文的学说,有一种稳定的倾向趋于不定变异,而且因为微小的初期变异是朝向一切方面的,所以它们一定有彼此中和和最初形成极不稳定的变异的倾向,因此,就很难理解,如果不是不可能的话,这种无限微小发端的不定变异,怎么能够被自然选择所掌握而且存续下来,终于形成对一片叶子、一个竹枝或<敏感詞>东西的充分类似性。”但是在上述的一切情形里,昆虫的原来状态与它屡屡访问的处所的一种普通物体,无疑是有一些约略的和偶然的类似性的。只要考虑一下周围物体的数量几乎是无限的,而且昆虫的形状和颜色是各式各样的,就可知道这并不是完全不可能的事。某些约略的类似性对于最初的发端是必要的,出此我们能够理解为什么较大的和较高等的动物(据我所知,有一种鱼是例外)不会为了保护自己而与一种特殊的物体相类似,只是与周围的表面相类似,而且主要是颜色的相类似。假定有一种昆虫本来与枯枝或枯叶有某种程度的类似,并且它轻微地向许多方面进行变异,于是使昆虫更像任何这些物体的一切变异便被保存下来,固为这些变异有利于昆虫逃避敌害,但是另一方面,<敏感詞>变异就被忽略,而终于消失;或者,如果这些变异使得昆虫完全不像模拟物,它们就要被消灭。如果我们不根据自然选择而只根据彷徨变异来说明上述的类似性,那末米伐特先生的异议诚然是有力的;但实际情况并非如此。
  华莱斯先生举出一个竹节虫(Ceroxylus laceratus)的例子,它像“一枝满生鳞苔的杖”。这种类似如此真切,以致大亚克(Dyak)土人竟说这种叶状瘤是真正的苔。米伐特先生认为这种“拟态完全化的最高妙技”是一个难点,但我看不出它有什么力量。昆虫是鸟类和<敏感詞>敌害的食物,鸟类的视觉大概比我们的还要敏锐,而帮助昆虫逃脱敌害的注意和发觉的各级类似性,就有把这种昆虫保存下来的倾向;并且这种类似性愈完全,对于这种昆虫就愈有利。考虑到上述竹节虫所属的这一群里的物种之间的差异性质,就可知道这种昆虫在它的身体表面上变得不规则,而且多少帯有绿色,并不是不可能的;因为在各个群里,几个物种之间的不同性状最容易变异,而另一方面,属的性状,即一切物种所共有的性状最为稳定。
  格林兰(Greenland)的鲸鱼是世界上一种最奇异的动物,鲸须或鲸骨是它的最大特征之一。鲸须生在上颚的两侧,各有一行,每行约三百片,很紧密地对着嘴的长轴横排着。在主排之内还有一些副排。所有须片的未端和内缘都磨成了刚毛,刚毛遮盖着整个巨大的颚,作为滤水之用,由此而取得这些巨大动物依以为生的微小食物。格林兰鲸鱼的中间最长的一个须片竟长达十英尺、十二英尺甚至十五英尺;但在鲸类的不同物种里它的长度分为诸级,据斯科列斯比(Scoresby)说,中间的那一须片在某一物种里是四英尺长,在另一物种里是三英尺长,又在另一物种里是十八英寸长,而在长吻鳁鲸(Balaenoptera rostrata)里其长度仅九英寸左右。鲸骨的性质也随物种的不同而有所差异。
  关于鲸须,米伐特先生说道:当它“一旦达到任何有用程度的大小和发展之后,自然选择才会在有用的范围内促进它的保存和增大。但是在最初,它怎样获得这种有用的发展呢?”在回答中我们可以问,具有鲸须的鲸鱼的早期祖先,它们的嘴为什么不应像鸭嘴那样地具有栉状片呢?鸭也像鲸鱼一样,依靠滤去泥和水以取得食物的;因此这一科有时候被称为滤水类(Criblatores)。我希望不要误解我说的是鲸鱼祖先的嘴确曾具有像鸭的薄片喙那样的嘴。我只是想表明这并不是不可信的,并且格林兰鲸鱼的巨大鲸须板,也许最初通过微小的级进步骤从这种柿状片发展而成,每一级进步骤对这动物本身都有用途。
  琵琶嘴鸭(Spatula clypeata)的喙在构造上比鲸鱼的嘴更巧妙而复杂。根据我检查的在其上颚两侧各有188枚富有弹性的薄栉片一行,这些栉片对着喙的长轴横生,斜列成尖角形。它们都是由颚生出,靠一种韧性膜附着在颚的两侧,位于中央附近的栉片最长,约为三分之一英寸,突出边缘下方达0.14英寸长。在它们的基部有斜着横排的栉片构成短的副列。这几点都和鲸鱼口内的鲸须板相类似。但接近嘴的先端,它们的差异就很大,因为鸭嘴的栉片是向内倾斜,而不是下向垂直的。琵琶嘴鸭的整个头部,虽然不能和鲸相比,但和须片仅丸英寸长的、中等大的长吻鳁鲸比较起来,约为其头长的十八分之一;所以,如果把琵琶嘴鸭的头放大到这种鲸鱼的头那么长,则它们的栉片就应当有六英寸长,——即等于这种鲸须的三分之二长。琵琶嘴鸭的下颚所生的栉片在长度上和上颚的相等,只是细小些;因为有这种构造,它显然与不生鲸须的鲸鱼下颚有所不同。另一方面,它的下颚的栉片顶端磨成细尖的刚毛,却又和鲸须异常类似。锯海燕属是海燕科的另一个成员,它只在上颚生有很发达的栉片,突出颚边之下:这种鸟的嘴在这一点上和鲸鱼的嘴相类似。
  从琵琶嘴鸭的椽这种高度发达的构造(根据我从沙尔文先生[Mr.Salvin]送给我的标本和报告所知道的),仅就适于滤水这一点来说,我们可以经由湍鸭(Merganetta armata)的喙,并在某些方面经由鸳鸯(Aix sponsa)的喙,一直追踪到普通家鸭的喙,其间并没有任何大的间断。家鸭喙内的栉片比琵琶嘴鸭喙内的栉片粗糙得多,并且牢固地附着在颚的两侧;在每侧上大约只有五十枚,不向嘴边下方突出。它们的顶端呈方形,并且镶着透明坚硬组织的边,好像是为了轧碎食物似的。下颚边缘上横生着无数细小而突出很少的突起线。作为一个滤水器来说,虽然这种喙比琵琶嘴鸭的喙差得多,然而每个人都知道,鸭经常用它滤水的。我从沙尔文先生那里听到,还有<敏感詞>物种的柿片比家鸭的栉片更不发达;但我不知道它们是否把它当作滤水用的。
  现在谈一下同科的另一群。埃及鹅(Chenalopex)的喙与家鸭的喙极相类似;但是柿片没有那么多,那么分明,而且向内突出也不那样厉害;然而巴利特先生(Mr.E.Bartlett)告诉我说,这种鹅“和家鸭一样,用它的嘴把水从喙角排出来”。但是它的主要食物是草,像家鹅那样地咬吃它们。家鹅上颚的柿片比家鸭的粗糙得多,几乎混生在一起,每侧约有二十七枚,未端形成齿状的结节。颚部也满布坚硬的圆形结节。下颚边缘由牙齿形成锯齿状,比鸭喙的更突出,更粗糙,更锐利。家鹅不用喙滤水,而完全用喙去撕裂或切断草类,它的喙十分适于这种用途,能够靠近根部把草切断,<敏感詞>任何动物几乎都不及它。另外还有一些鹅种,我听到巴利特先生说,它们的栉片比家鹅的还下发达。
  由此我们看到,生有像家鹅椽那样的喙、而且仅供咬草之用的鸭科的一个成员,或者甚至生有柿片较不发达的喙的一个成员,由于微小的变异,大概会变成为像埃及鹅那样的物种的,——由此更演变成像家鸭那样的物种,——最后再演变成像琵琶嘴鸭那样的物种,而生有一个差不多完全适于滤水的喙;因为这种鸟除去使用喙部的带钩先端外,并不使用喙的任何<敏感詞>部分以捉取坚硬的食物和撕裂它们。我还可补充他说,鹅的喙也可以由微小的变异变成为生有突出的、向后弯曲的牙齿的喙,就像同科的一个成员秋沙鸭(Merganser)的喙那样的,这种喙的使用目的大不相同,是用作捕捉活鱼的。
回复

使用道具 举报

18
 楼主| 发表于 2008-1-20 13:39:08 | 只看该作者
再回头来讲一讲鲸鱼,无须鲸(Hyperoodon bidens)缺少有效状态的真牙齿,但是据拉塞丕特(Lacepede)说,它的颚散乱地生有小形的、不等的角质粒点。所以假定某些原始的鲸鱼类型在颚上生有这等相似的角质粒点,但排列得稍微整齐一些,并且像鹅喙上的结节一样,用以帮助捉取和撕裂食物,并不是不可能的。如果是这样的话,那么就几乎不能否认这等粒点可以通过变异和自然选择,演变成像埃及鹅那样的十分发达的栉片,这种栉片是用以滤水和捉取食物的;然后又演变成像家鸭那样的栉片;这样演变下去,一直到像琵琶嘴鸭那样的专门当作滤水器用的构造良好的栉片。从栉片达到长吻鳁鲸须片的三分之二长这一个阶段起,在现存鲸鱼类中观察到的级进变化可以把我们向前引导到格林兰鲸鱼的巨大须片上去。这一系列中的每一步骤,就像鸭科不同现存成员的喙部级进变化那样,对于在发展进程中其器官机能慢慢变化着的某些古代鲸鱼都是有用的,对此毫无怀疑的余地。我们必须记住,每一个鸭种都是处于剧烈的生存斗争之下的,并且它的身体的每一部分的构造一定要十分适应它的生活条件。
  比目鱼科(Pleuronectidra)以身体不对称著称。它们卧在一侧,——多数物种卧在左侧,有些卧在右侧;与此相反的成鱼也往往出现,下面,即卧着的那一侧,最初一看,与普通鱼类的腹面相类似:它是白色的,在许多方面不如上面那一侧发达,侧鳍也常常比较小。它的两眼具有极其显著的特征;因为它们都生在头部上侧。在幼小的时候,它们本来分生在两侧,那时整个的身体是对称的,两侧的颜色也是相同的。不久之后,下侧的眼睛开始沿着头部慢慢地向上侧移动;但并不是像从前想像的那样是直接穿过头骨的。显然,除非下侧的眼睛移到上侧,当身体以习惯的姿势卧在一侧时,那只眼睛就没有用处了。还有,这大概是因为下侧的那一只眼容易被沙底磨损的缘故。比目鱼科那种扁平的和不对称的构造极其适应它们的生活习性,这种情形,在若干物种如鳎(soles)、鲽(flounders)里也极其普通,就是很好的说明。由此得到的主要利益似乎在于可以防避敌害,而且容易在海底取食。然而希阿特说,本科中的不同成员可以“列为一个长系列的类型,这系列表示了它们的逐渐过渡,从孵化后在形状上没有多大改变的庸鲽(Hippog-lossus pinguis)起,一直到完全卧倒在一侧的鳎为止”。
  米伐特先生曾经提出过这种情形,并且说,在眼睛的位置上有突然的、自发的转变是难以相信的,我十分同意这种说法。他又说,“如果这种过渡是逐渐的,那么这种过渡,即一只眼睛移向头的另一侧的行程中的极小段落,如何会有利于个体,真是难以理解的。这种初期的转变与其说有利,勿宁说多少是有害的”。可是在曼姆(Malm)1867年所报道的优秀观察中,他可以找到关于这个问题的答复,比目鱼科的鱼在极幼小和对称的时候,它们的眼睛分生在头的两侧,但因为身体过高,侧鳍过小,又因为没有鳔,所以不能长久保持直立的姿势。不久它疲倦了,便向一侧倒在水底。根据曼姆的观察,它们这样卧倒时,常常把下方的眼睛向上转,看着上面;并且眼睛转动得如此有力,以致眼球紧紧地抵着眼眶的上边。结果两眼之间的额部暂时缩小了宽度,这是可以明白看到的。有一回,曼姆看见一条幼鱼抬起下面的眼睛,并且把它压倒约七十度角的距离。
  我们必须记住,头骨在这样的早期是软骨性的,并且是可挠性的,所以它容易顺从肌肉的牵引。并且我们知道,高等动物甚至在早期的幼年以后,如果它们的皮肤或肌肉因病或某种意外而长期收缩,头骨也会因此而改变它的形状。长耳朵的兔,如果它们的一只耳朵向前和向下垂下,它的重量就能牵动这一边的所有头骨向前,我曾画过这样的一张图。曼姆说,鲈鱼(percbes)、大马哈鱼和几种<敏感詞>对称鱼类的新孵化的幼鱼,往往也有在水底卧在一侧的习性;并且他看到,这时它们常常牵动下面的眼睛向上看;因此它们的头骨会变得有些歪。然而这些鱼类不久就能保持直立的姿势,所以永久的效果不会由此产生。比目鱼科的鱼则不然,由于它们的身体日益扁平,所以长得愈大,卧在一侧的习性也愈深,因而在头部的形状上和眼睛的位置上就产生了永久的效果。用类推的方法可以判断,这种骨骼歪曲的倾向按照遗传原理无疑会被加强的。希阿特与某些<敏感詞>博物学者正相反,他相信比目鱼科的鱼甚至在胚胎时期已不十分对称,如果是这样的话,我们就能理解为什么某些物种的鱼在幼小的时候习惯地卧在左侧,而<敏感詞>一些物种却卧在右侧。曼姆在证实上述意见时又说道,不属于比目鱼科的北粗鳍鱼(Trachypterus arcticus)的成体,在水底也卧在左侧,并且斜着游泳;这种鱼的头部两侧,据说有点不相像。我们的鱼类学大权威京特博士(Dr.Gunther)在描述曼姆的论文之后,加以评论:“作者对比目鱼利的异常状态,提出了一个很简单的解释。”
  这样,我们看到,眼睛从头的一侧移向另一侧的最初阶段,米伐特先生认为这是有害的,但这种转移可以归因于侧卧在水底时两眼努力朝上看的习性,而这种习性对于个体和物种无疑都是有利的,有几种比目鱼的嘴弯向下面,而且没有眼睛那一侧的头部颚骨,如特拉奎尔博士(Dr.Traquair)所想像的,由于便利在水底取食,比另一侧的颚骨强而有力,我们可以把这种事实归因于使用的遗传效果。另一方面,包括侧鳍在内的鱼的整个下半身比较不发达,这种情况可以借不使用来说明;虽然耶雷尔(Yarrell)推想这等鳍的缩小,对于比目鱼也有利,因为“比起上面的大形鳍,下面的鳍只有极小的空间来活动”。星鲽(plaice)的上颚生有四个至七个牙齿,下颚生有二十五个至三十个牙齿,这种牙齿数目的比例同样也可借不使用来说明。根据大多数鱼类的以及许多<敏感詞>动物的腹面没有颜色的状况,我们可以合理地假定,比目鱼类的下面一侧,无论是右侧或左侧,没有颜色,都是由于没有光线照射的缘故。但是我们不能假定,鳎的上侧身体的特殊斑点很像沙质海底,或者如普谢(Pouchet)最近指出的某些物种具有随着周围表面而改变颜色的能力,或者欧洲大菱鲆(turbot)的上侧身体具有骨质结节,都是由于光线的作用。在这里自然选择大概发生作用,就像自然选择使这等鱼类身体的一般形状和许多<敏感詞>特性适应它们的生活习性一样。我们必须记住,如我以前所主张的,器官增强使用的遗传效果,或者它们不使用的遗传效果,会因自然选择而加强。因为,朝着正确方向发生的一切自发变异会这样被保存下来;这和由于任何部分的增强使用和有利使用所获得的最大遗传效果的那些个体能够被保存下来是一样的。至于在各个特殊的情形里多少可以归因于使用的效果,多少可以归因于自然选择,似乎是不可能决定的。
  我可以再举一例来说明,一种构造的起源显然是完全由于使用或习性的作用。某些美洲猴的尾端已变成一种极其完善的把握器官,而当作第五只手来使用。一位完全赞同米伐特先生的评论者,关于这种构造说道,“不可能相信,在任何悠久的年代中,那个把握的最初微小倾向,能够保存具有这等倾向的个体生命,或者能够惠予它们以生育后代的机会”。但是任何这种信念都是不必要的。习性大概足以从事这种工作,习性差不多意味着能够由此得到一些或大或小的利益。布雷姆(Brehm)看到一只非洲猴(Cer-copithecus)的幼猴,用手攀住它的母亲的腹面,同时还用它的小尾巴钩住母猴的尾巴。亨斯洛教授(Prof.Henslow)伺养了几只仓鼠(Mus messorius),这种仓鼠的尾巴构造得并不能把握东西;但是他屡屡观察到它用尾巴卷住放在笼内的一丛树枝上,来帮助它们的攀缘,我从京特博士那里得到一个类似的报告,他曾看到一只鼠用尾巴把自己挂起。如果仓鼠有严格的树栖习性,它的尾巴或者会像同一目中某些成员的情形那样,构造得具有把握性。考察了非洲猴幼小时的这种习性,为什么它们后来不这样呢,这是难以解答的。这种猴的长尾可能在巨大的跳跃时当作平衡器官,比当作把握器官对于它们更有用处吧。
  乳腺是哺乳动物全纲所共有的,并且对于它们的生存是不可缺少的;所以乳腺必在极其久远的时代就已经发展了,而关于乳腺的发展经过,我们肯定是什么也不知道的。米伐特先生问道:“能够设想任何动物的幼体偶然从它的母亲的胀大的皮腺吸了一滴不大滋养的液体,就能避免死亡吗?即使有过一次这种情形,那么有什么机会能使这样的变异永续下去呢?”但是这个例子举得并不适当。大多数进化论者都承认哺乳动物是从有袋动物传下来的;如果是这样的话,则乳腺最初一定是在育儿袋内发展起来的。在一种鱼(海马属[Hippocampus])的场合里,卵就是在这种性质的袋里孵出的,并且幼鱼有一时期也是养育在那里的;一位美国博物学者洛克伍得先生(Mr.Lockwood),根据他看到的幼鱼发育情形,相信它们是由袋内皮腺的分泌物来养育的。那末关于哺乳动物的早期祖先,差不多在它们可以适用这个名称之前,其幼体按照同样的方法被养育,至少是可能的吧?并且在这种情形里,那些分泌带有乳汁性质的、并且在某种程度或方式上是最营养的液汁的个体,比起分泌液汁较差的个体,毕竟会养育更多数目的营养良好的后代;因此,这种与乳腺同源的皮腺就会被改进,或者变得更为有效,分布在袋内一定位置上的腺,会比其余的变得格外发达,这是与广泛应用的专业化原理相符合的;它们于是变为乳房,但起初没有乳头,就像我们在哺乳类中最下级的鸭嘴兽里所看到的那样。分布在一定位置上的腺,通过什么样的作用,会变得比其余的更加专业化,是否一部分由于生长的补偿作用、使用的效果、或者自然选择,我还不敢断定。
  除非幼体能够同时吸食这种分泌物,则乳腺的发达便没有用处,而且也不会受自然选择的作用。要理解幼小哺乳动物怎样能够本能地懂得吸食乳汁,并不比理解未孵化的小鸡怎样懂得用特别适应的嘴轻轻击破蛋壳,或者怎样在离开了蛋壳数小时以后便懂得啄取谷粒的食物,更加困难。在这等情形里,最可能的解释似乎是,这种习性起初是在年龄较大的时候由实践里获得的,其后乃传递给年龄较幼的后代。但是,据说幼小的袋鼠并不吸乳,只是紧紧含住母兽的乳头,母兽就把乳汁射进她的软弱的、半形成的后代的口里。对于这个问题,米伐特先生说道,“如果没有特别的设备,小袋鼠一定会因乳汁侵入气管而被窒息,但是,特别的设备是有的。它的喉头生得如此之长,上面一直通到鼻管的后端,这样就能够让空气自由进入到肺里,而乳汁可以无害地经过这种延长了的喉头两侧,安全地达到位在后面的食管”。米伐特先生于是问道,自然选择怎样从成年袋鼠以及从大多数<敏感詞>哺乳类(假定是从有袋类传下来的)把“这种至少是完全无辜的和无害的构造除去呢?”可以这样答复:发声对许多动物确有高度的重要性,只要喉头通进鼻管,就不能大力发声;并且弗劳尔教授(Prof.Flower)曾经告诉我说,这种构造对于动物吞咽固体食物,是大有妨碍的。
  我们现在稍微谈一谈动物界中比较低等的部门。棘皮动物(星鱼、海胆等等)生有一种引人注意的器官,叫做叉棘(pedicella-ria),在很发达的情况下,它成为三叉的钳,——即由三个锯齿状的钳臂形成的,三个钳臂密切配合在一起,位在一枝有弹性的、由肌肉而运动的柄的顶端。这种钳能够牢固地挟住任何东西;亚历山大·阿加西斯曾看到一种海胆(Echinus)很快地把排泄物的细粒从这个钳传递给那个钳,沿着体部一定的几条线路落下去,以免弄污它的壳。但是它们除了移去各种污物之外,无疑还有<敏感詞>的功用;其中之一显然是防御。
  关于这些器官,米伐特先生又像以前许多次的情形那样问道:“这种构造的最初不发育的开端,会有什么用处呢?并且这种初期的萌芽怎么能够保存一个海胆的生命呢?”他又补充说道:“纵使这种钳住作用是突然发展的,如果没有能够自由运动的柄,这种作甩也不会是有利的,同时,如果没有能够钳住的钳,这种柄也不会有什么效用,然而单是细微的、不定的变异,并不能使构造上这等复杂的相互协调同时进化;如果否认这一点,似乎无异肯定了一种惊人的自相矛盾的奇论。”虽然在米伐特先生看来这似乎是自相矛盾的,但是基部固定不动的、却有钳住作用的三叉棘,确在某些星鱼类里存在着;这是可以理解的,如果它们至少部分地把它当作防御手段来使用,在这个问题上供给我很多材料使我十分感激的阿加西斯先生告诉我说,还有<敏感詞>星鱼,它们的三枝钳臂的当中一枝已经退化成<敏感詞>二枝的支柱;并且还有<敏感詞>的属,它们的第三枝臂已经完全亡失了。根据柏利那先生(Mr.Perrier)的描述,斜海胆(Ecbinoneus)的壳上生着两种叉棘,一种像刺海胆的叉棘,一种像心形海胆属(Spatangus)的叉棘;这等情形常常是有趣的,因为它们通过一个器官的两种状态中的一种的亡失,指出了明确突然的过渡方法。
  关于这等奇异器官的进化步骤,阿加西斯先生根据他自己的研究以及米勒的研究,作出如下推论:他认为星鱼和海胆的叉棘无疑应当被看作是普通棘的变形。这可以从它们个体的发育方式,并且可以从不同物种和不同属的一条长而完备的系列的级进变化——由简单的颗粒到普通的棘,再到完善的三叉棘——推论出来。这种逐渐演变的情形,甚至见于普通的棘和具有石灰质支柱的叉棘如何与壳相连结的方式中。在星鱼的某些属里可以看到,“正是那种连结表明了叉棘不过是变异了的分枝叉棘”。这样,我们就可以看到固定的棘,具有三个等长的、锯齿状的、能动的、在它们的近基部处相连接的枝;再上去,在同一个棘上,另有三个能动的枝。如果后者从一个棘的顶端生出,事实上就会形成一个粗大的三叉棘,这样的情况在具有三个下面分枝的同一棘上可以看到。叉棘的钳臂和棘的能动的枝具有同一的性质,这是没有问题的。众所公认普通棘是作为防御用的;如果是这样的话,那就没有理由可以怀疑那些生着锯齿和能动分枝的棘也是用于同样的目的的;并且一旦它们在一起作为把握或钳住的器具而发生作用时)它们就更加有效了,所以,从普通固定的棘变到固定的叉棘所经过的每一个级进都是有用处的。
  在某些星鱼的属里,这等器官并不是固定的,即不是生在一个不动的支柱上的,而是生在能挠曲的、具有肌肉的短柄上的;在这种情形里,除了防御之外,它们大概还营某些附加的机能。在海胆类里,由固定的棘变到连接于壳上并日此而成为能动的棘,这些步骤是可以追踪出来的。可惜在这里没有篇幅把阿加西斯先生关于叉棘发展的有趣考察作一个更详细的摘要。照他说,在星鱼的叉棘和棘皮动物的另一群、即阳遂足(Ophiurians)的钩刺之间,也可以找到一切可能的级进;并且还可以在海胆的叉棘和棘皮动物这一大纲的海参类(Holothuria)的锚状针骨之间,找到一切可能的级进。
  某些复合动物,以前称为植虫(zoophytes),现在称为群栖虫类(Po1yzoa),生有奇妙的器官,叫做鸟嘴体(avicularia)。这等器官的构造在不同物种里大不相同。在最完善的状态下,它们具体而微地与秃鹫的头和嘴奇妙的相类似,它们生在颈部上面,而且能运动,下颚也是如此。我曾观察到一个物种,其生于同一枝上的鸟嘴体常常一齐向前和向后运动,下颚张得很大,约成丸十度的角,能张开五秒钟;它们的运动使得整个群栖虫体都颤动起来了。如果用一枝针去触它的颚,它们把它咬得如此牢固,以致会摇动它所在的一枝。
  米伐特先生举出这个例子,主要在于他认为群栖虫类的鸟嘴体和棘皮动物的叉棘“本质上是相似的器官”,而且这些器官在动物界的远不相同的这两个部门里通过自然选择而得到发展是困难的。但仅就构造来说,我看不出三叉棘和鸟嘴体之间的相似性。鸟嘴体倒很类似甲壳类的钳;米伐特先生大概可以同等妥当地举出这种相似性,甚至它们与鸟类的头和喙的相似性,作为特别的难点。巴斯克先生(Mr.Busk)、斯密特博士(Dr.Smitt)和尼采博士(Dr.Nitsche)——他们是仔细研究过这一类群的博物学者——都相信鸟嘴体与单虫体(zooid)以及组成植虫的虫房是同源的;能运动的唇,即虫房的盖,是与鸟嘴体的能运动的下颚相当的,然而巴斯克先生并不知道现今存在于单虫体和鸟嘴体之间的任何级进。所以不可能猜想通过什么样的有用级进,这个能够变为那个;但决不能因此就说这等级进从来没有存在过。
  因为甲壳类的钳在某种程度上与群栖虫类的鸟嘴体相类似,二者都是当作钳子来使用的,所以值得指出,关于甲壳类的钳至今还有一长系列有用的级进存在着。在最初和最简单的阶段里,肢的末节闭合时抵住宽阔的第二节的方形顶端,或者抵住它的整个一边;这样,就能把一个所碰到的物体夹住;但这肢还是当作一种移动器官来用的。其次,宽阔的第二节的一角稍微突出,有时生着不整齐的牙齿,末节闭合时就抵住这些牙齿,随着这种突出物增大,它的形状以及末节的形状也都稍有变异和改进,于是钳就会变得愈益完善,直到最后变成为龙虾钳那样的有效工具,实际上一切这等级进都是可以追踪出来的。
  除鸟嘴体外,群栖虫类还有一种奇妙的器官,叫做震毛(vibra-cula)。这等震毛一般是由能移动的而且易受刺激的长刚毛所组成的。我检查过一个物种,它的震毛略显弯曲,并且外缘成锯齿状,而且同一群栖虫体上的一切震毛常常同时运动着:它们像长桨似地运动着,使一枝群体迅速地在我的显微镜的物镜下穿过去。如果把一枝群体面向下放着,震毛便纠缠在一起,于是它们就猛力地把自己弄开,震毛被假定有防御作用,正如巴斯克先生所说的,可以看到它们“慢慢地静静地在群体的表面上扫动,当虫房内的纤弱栖住者伸出触手时,把那些对于它们有害的东西扫去”。鸟嘴体与震毛相似,大概也有防御作用,但它们还能捕捉和杀害小动物,人们相信这些小动物被杀之后被水流冲到单虫体的触手所能达到的范围之内的。有些物种兼有鸟嘴体和震毛,有些物种只有鸟嘴体,并且还有少数物种只有震毛。
  在外观上比刚毛(即震毛)与类似鸟头的鸟嘴体之间的差异更大的两个物体,是不容易想像出来的;然而它们几乎肯定是同源的,而且是从同一个共同的根源——即单虫体及其虫房——发展出来的。因此,我们能够理解,如巴斯克先生向我说的,这等器官在某些情形里,怎样从这种样子逐渐变化成另一种样子。这样,膜胞苔虫属(Lepralia)有几物种,其鸟嘴体的,能运动的颚是这样突出,而且这样类似刚毛,以致只能根据上侧固定的嘴才可以决定它的鸟嘴体的性质。震毛可能直接从虫房的唇片发展而来,并没有经过鸟嘴体的阶段;但它们经过这一阶段的可能性似乎更大些,因为在转变的早期,包藏着单虫体的虫房的<敏感詞>部分,很难立刻消失。在许多情形里,震毛的基部有一个带沟的支柱,这支柱似乎相当于固定的鸟嘴状构造;虽然某些物种完全没有这支柱。这种震毛发展的观点,如果可靠,倒是有趣的;因为,假定一切具有鸟嘴体的物种都已绝灭了,那未最富有想像力的人也决不会想到震毛原来是一种类似鸟头式的器官的一部分,或像不规则形状的盒子或兜帽的器官的一部分。看到如此大不相同的两种器官竟会从一个共同根源发展而来,确很有趣;并且因为虫房的能运动的唇片有保护单虫的作用,所以不难相信,唇片首先变为鸟嘴体的下颚,然后变为长刚毛,其间所经过的一切级进,同样可以在不同方式和不同环境条件下发挥保护作用。
  在植物界里,米伐特先生只讲到两种情形,即兰科植物的花的构造和攀缘植物的运动。关于兰科植物,他说道:“对于它们的起源的解释完全不能令人满意,——对于构造之初期的、最微细的发端,所进行的解释,十分不充分。这些构造只有在相当发展时才有效用。”我在另一著作里已经详细地讨论过这个问题,因此这里只对兰科植物的花的最显著特性,即它们的花粉块(pollinia),稍微详细地加以叙述。高度发达的花粉块,是由一团花粉粒集成的,着生在一条有弹性的柄、即花粉块柄上,此柄则附着在一小块极粘的物质上。花粉块就由这种方法依靠昆虫从这花被运送到那花的柱头上去。某些兰科植物的花粉块没有柄,花粉粒仅由细丝联结在一起;但是这种情形不仅限于兰科植物,所以无须在这里进行讨论;然而我可以提一提处于兰科植物系统中最下等地位的杓兰属(Cypripedium),从那里我们可以看出这些细丝大概是怎样最初发达起来的。在<敏感詞>兰科植物里,这些细丝粘着在花粉块的一端;这就是花粉块柄的最初发生的痕迹。这就是柄——即使是相当长而高度发达的柄——的起源,我们还能从有时埋藏在中央坚硬部分的发育不全的花粉粒里找到良好的证据。
  关于花粉块的第二个主要特性,即附着在柄端的那一小块粘性物质,可以举出一长列的级进变化,每一个级进显然对于这种植物都有用处,<敏感詞>“目”的大多数花的柱头却分泌很少的粘性物质。某些兰科植物也分泌相似的粘性物质,但在三个柱头中只有一个柱头分泌得特别多:这个柱头大概因为分泌过盛的结果,而变为不育的了。当昆虫访问这类花的时候,它擦去一些这种粘性物质,这样就同时把若干花粉粒粘去。从这种与大多数普通花相差极微的简单情形起,——直到花粉块附着在很短的和游离的花粉块柄上的物种,——再到花粉块柄固着在粘性物质上的、并且不育柱头变异很大的<敏感詞>物种,——存在着无数的级进。在最后的场合里)花粉块最发达而且最完全。凡是亲身仔细研究过兰科植物的花的人,都不会否认有上述一系列的级进存在——有的兰科植物的花粉粒团仅由细丝连结在一起,其柱头和普通花的柱头相差无几,从这种情形起,一直到高度复杂的花粉块,它们非常适应于昆虫运送;他也不会否认那几个物种的所有级进变化部非常适应于各种花的一般构造由不同昆虫来授粉。在这种情形里,而且差不多在<敏感詞>一切情形里,还可以更进一步地向下追问下去;可以追问普通花的柱头怎样会变成粘的,但是因为我们还不知道任何生物群的全部历史,所以这样发涧之没有用处,正如企图解答它们之没有希望一样。
  我们现在要讲一讲攀缘植物。从单纯地缠绕一个支柱的攀缘植物起,到被我称为叶攀缘植物和生有卷须的攀缘植物止,可以排列成一个长的系列。后两类植物的茎虽然还保持着旋转的能力,纵不是常常失去,但一般已失去了缠绕的能力,而卷须同样也具有旋转能力。从叶攀缘植物到卷须攀缘植物的级进是密切相接的,有某些植物可以随便放在任何一类里。但是,从单纯的缠绕植物上升到叶攀缘植物的过程中,却添加了一种重要性质,即对接触的感应性,依靠这种感应性,叶柄或花梗,或已变成卷须的叶柄或花梗,能因刺激而弯曲在接触物体的周围并绕住它们,凡是读过我的关于这等植物的研究报告的人,我想,都会承认在单纯的缠绕植物和卷须攀缘植物之间,其机能上和构造上的所有级进变化,各各对于物种都高度有利。例如,缠绕植物变为叶攀缘植物,显然是大有利的;具有长叶柄的缠绕植物,如果这叶柄稍具必需的接触感应性,大概就会发展为叶攀缘植物。
  缠绕是沿着支柱上升的最简单方法,并且是在这一系列的最下级地位,因此可以很自然地问道,植物最初怎样获得这种能力,此后才通过自然选择有所改进和增大,缠绕的能力,第一,依赖茎在幼小时的极度可挠性(这是许多非攀缘植物所共有的性状);第二,依赖茎枝按照同一顺序逐次沿着圆周各点的不断弯曲。茎依赖这种运动,才能朝着各个方向旋转,茎的下部一旦碰上任何物体而停止缠绕,它的上部仍能继续弯曲、旋转,这样必然会缠绕着支柱上升,在每一个新梢的早期生长之后,这种旋转运动即行停止。在系统相距甚远的许多不同科植物里,一个单独的物种和单独的属常常具有这种旋转的能力,并且由此而变成缠绕植物,所以它们一定是独立地获得了这种能力,而不是从共同祖先那里遗传来的。因此,这使我预言,在非攀缘植物中,稍微具有这类运动的倾向,也并非不常见,这就为自然选择提供了作用和改进的基础。当我作这一预言时,我只知道一个不完全的例子,即轻微地和不规则地旋转的毛籽草(Maurandia)的幼小花梗,很像缠绕植物的茎,但这种习性一点也没有被利用。以后不久米勒发见了一种泽泻属(Alisma)植物和一种亚麻属(Linum)植物——二者并不是攀缘植物,而且在自然系统上也相距甚远——的幼茎虽然旋转得不规则,但分明是能够这样的;他说道,他有理由可以猜测,某些别种植物也有这种情形。这等轻微的运动看来对于那种植物并没有什么用处;无论如何,它们对于我们所讨论的攀缘作用至少是毫无用处的。尽管如此,我们还能看出,如果这等植物的茎本来是可挠屈的,并且如果在它们所处的条件下有利于它们的升高,那未,轻微的和不规则的旋转习性便会通过自然选择而被增大和利用。直到它们转变为十分发达的缠绕物种。
  关于叶柄、花柄和卷须的感应性,几乎同样可以用来说明缠绕植物的旋转运动。属于大不相同的群的许许多多物种,都被赋予了这种感应性,因此在许多还没有变为攀缘植物的物种里,也应该可以看到这种性质的初生状态,事实是这样的:我观察到上述毛籽草的幼小花梗,自己能向所接触的那一边微微弯曲。莫伦(Mor-ren)在酢酱草属(Oxalis)的若干物种里,发见了如果叶和叶柄被轻轻地、反复地触碰着,或者植株被摇动着,叶和叶柄便发生运动,特别是暴露在烈日之下以后更加如此。我对<敏感詞>几个酢酱草属的物种反复地进行了观察,结果是一样的;其中有些物种的运动是很明显的,但在幼叶里看得最清楚;在别的几个物种里运动却是极其轻微的。根据高级权威霍夫迈斯特(Hofme1ster)所说,一切植物的幼茎和叶子,在被摇动之后,都能运动,这是一个更加重要的事实;至于攀缘植物,如我们所知,只在生长的早期,它们的叶柄和卷须才是敏感的。
  在植物的幼小的、和成长着的器官里,由于被触碰或者被摇动所起的轻微运动,对于它们似乎很少可能有任何机能上的重要性。但是植物顺应着各种刺激而发生运动能力,对于它们却是极其重要的;例如向光的运动能力以及比较罕见的背光的运动能力,——还有,对于地球引力的背性和比较罕见的向性。当动物的神经和肌肉受到电流的刺激时,或者由于吸收了木鳖子精(strychnine)而受到刺激时所发生的运动,可以称为偶然的结果,因为神经和肌肉对于这等刺激并不具有特别的敏感。植物大概也是这样,它们因为有顺应一定的刺激而发生运动的能力,所以遇到被触碰或者被摇动,便起偶然状态的激动。固此,我们不难承认在叶攀缘植物和卷须植物的情形里,被自然选择所利用的和增大的就是这种倾向。然而根据我的研究报告所举出的各项理由,大概只在已经获得了旋转能力的、并且因此已变成为缠绕植物的植物里,才有这种情形发生。
  我已经尽力解释了植物怎样由于轻微的和不规则的、最初对于它们并无用处的旋转运动这种倾向的增大而变为缠绕植物;这种运动以及由于触碰或摇动而起的运动,是运动能力的偶然结果,并且是为了<敏感詞>有利的目的而被获得的。在攀缘植物逐步发展的过程中,自然选择是否得到使用的遗传效果之助,我还不敢断定;但是我们知道,某种周期的运动,如植物的所谓睡眠运动,是受习性的支配的。
  一位练达的博物学者仔细挑选了一些例子来证明自然选择不足以解释有用构造的初期阶段,现在我对他提出的异议已作了足够的讨论,或者已经讨论得过多了;并且我已阐明,如我所希望的,在这个问题上并没有什么大的难点,这样,就提供了一个好机会,来稍微多讨论一点有关构造的级进变化,这等级进变化往往伴随着机能的改变——这是一个重要的问题,而在本书的以前几版里没有作过详细的讨论。现在我把上述情形再扼要地重述一遍。
  关于长颈鹿,在某些已经绝灭了的能触及高处的反刍类中,凡具有最长的颈和腿等,并且能咬吃比平均高度稍高一点的树叶,其个体就会继续得到保存,凡不能在那样高处取食的个体就会不断地遭到毁灭,这样,大概便能满足这种异常的四足兽的产生了。但是一切部分的长期使用,再加上遗传作用,大概曾经大大地帮助了各部分的相互协调。关于模拟各种物体的许多昆虫,完全可以相信,对于某一普通物体的偶然类似性,在各个场合里曾是自然选择发生作用的基础,以后经过使这种类似性更加接近的微细变异的偶然保存,这样模拟才逐渐趋于完善。只要昆虫继续发生变异,并且只要愈来愈加完善的类似性能够使它逃出视觉锐利的敌害,这种作用就会继续进行。在某些鲸鱼的物种里,有一种颚上生有不规则的角质小粒点的倾向;并且直到这些粒点开始变为栉片状的突起或齿,像鹅的喙上所生的那样,——然后变成短的栉片,像家鸭的喙上所生的那样——再后变成栉片,像琵琶嘴鸭的嘴那样完善,——最后变成鲸须的巨片,像格林兰鲸鱼口中的那样——所有这些有利变异的保存,似乎完全都在自然选择的范围之内。在鸭科里,这栉片最初是当牙齿用的,随后部分当牙齿用,部分当滤器用,最后,就几乎完全当滤器用了。
  关于上述的角质栉片或鲸须的这等构造,据我们所能判断的来说,习性或使用对于它们的发展,很少或者没有作用。相反地,比目鱼下侧的眼睛向头的上侧转移,以及一个具有把握性的尾的形成,几乎完全可以归因于连续的使用以及伴随着的遗传作用。关于高等动物的乳房,最可能的设想是,最初有袋动物的袋内全表面的皮腺都分泌出一种营养的液体;后来这等皮腺通过自然选择,在机能上得到改进,并且集中在一定的部位,于是形成了乳房。要理解某些古代棘皮动物的作防御用的分枝棘刺,怎样通过自然选择而发展成三叉棘,比起理解甲壳动物的钳是通过最初专作行动用的肢的末端二节的微细的、有用的变异而得到发展,并没有更多的困难。在群栖虫类的鸟嘴体和震毛里,我们看到从同一根源发展成外观上大不相同的器官;并且关于震毛,我们能够理解那些连续的级进变化可能有什么用处。关于兰科植物的花粉块,可以从原本用来把花粉粒结合在一起的细丝,追踪出逐渐粘合成花粉块的柄;还有,如普通花的拄头所分泌的粘性物质,可以供作虽不十分一样的、但大致相同的目的之用,这种粘性物质附着在花粉块柄的游离末端上所经过的步骤,也是可以追踪出来的;——所有这等级进变化对于各该植物都是显著有利的。至于攀缘植物,我不必重复刚才已经讲过的那些了。
  经常有人问道,自然选择既然如此有力量,为什么对于某些物种显然有利的这种或那种构造,没有被它们获得呢?但是,考虑到我们对于各种生物的过去历史以及对于今日决定它们的数量和分布范围的条件是无知的,要想对于这样的问题给予确切的回答,是不合理的。在许多情形里,仅能举出一般的理由,只有在少数情形里,才可以举出具体的理由。这样,要使一个物种去适应新的生活习性,许多协调的变异几乎是不可少的,并且常常可以遇到以下的情形,即那些必要的部分不按照正当的方式或正当的程度进行变异。许多物种一定由于破坏作用,而阻止了它们增加数量,这种作用和某些构造在我们看来对物种有利,因此便想像它们是通过自然选择而被获得的,但并无关系。在这种情形里,生存斗争并不依存于这等构造,所以这等构造不会通过自然选择而被获得。在许多情形里,一种构造的发展需要复杂的、长久持续的而且常常具有特殊性质的条件;而遇到这种所需要的条件的时候大概是很少的。我们所想像的、并且所往往错误想像的对于物种有利的任何一种构造,在一切环境条件下都是通过自然选择而被获得的,这种信念与我们所能理解的自然选择的活动方式是相反对的。米伐特先生并不否认自然选择有一些效力,但是他认为,我用它的作用来解说这等现象,“例证还不够充分”。他的主要论点刚才已被讨论过了,<敏感詞>的论点以后还要讨论到。依我看来,这些论点似乎很少有例证的性质,其分量远不及我们的论点,我们认为自然选择是有力量的,而且常常受到<敏感詞>作用的帮助。我必须补充一点,我在这里所用的事实和论点,有些已在最近出版的《医学外科评论》(MedicoChirurgicaI Review)的一篇优秀的论文里,为了同样的目的而被提出过了。
  今日,几乎所有的博物学者都承认有某种形式的进化。米伐特先生相信物种是通过“内在的力量或倾向”而变化的,这种内在的力量究竟是什么,实在全无所知。所有进化论者都承认物种有变化的能力;但是,依我看来,在普通变异性的倾向之外,似乎没有主张任何内在力量的必要;普通变异性通过人工选择的帮助,曾经产生了许多适应性良好的家养族;而且它通过自然选择的帮助,将会同等好地、一步一步地产生出自然的族,即物种。最后的结果,如已经说过的那样,一般是体制的进步,但在某些少数例子里是体制的退化。
  米伐特先生进而相信新种“是突然出现的,而且是由突然变异而成”,还有一些博物学者附和他的这种观点。例如,他假定已经绝灭了的三趾马(Hipparion)和马之间的差异是突然发生的。他认为,鸟类的翘膀“除了由于具有显著而重要性质的、比较突然的变异而发展起来的以外,<敏感詞>方法都是难于相信的”;并且显然他把这种观点推广到蝙蝠和翼手龙(pterodactyles)的翅膀。这意味着进化系列里存在着巨大的断裂或不连续性,这结论,依我看来,是极端不可能的。
  任何人如果相信进化是缓慢而逐渐的,当然也会承认物种的变化可以是突然的和巨大的,有如我们在自然状况下,或者甚至在家养状况下所看到的任何单独变异那样。但是如果物种受到饲养或栽培,它就比在自然状况下更容易变异,所以,像在家养状况下常常发生的那样巨大而突然的变异,不可能在自然状况下常常发生。家养状况下的变异,有若干可以归因于返祖遗传,这样重新出现的性状,在许多情形里,大概最初是逐渐获得的。还有更多的情形,必定叫作畸形,如六指的人、多毛的人、安康羊、尼亚太牛等等:因为它们在性状上与自然的物种大不相同,所以它们对于我们的问题所能提供的解释是很少的,除了这些突然的变异之外,少数剩下来的变异,如果在自然状况下发生,充其量只能构成与亲种类型仍有密切相联的可疑物种。
  我怀疑自然的物种会像家养族那样也突然发生变化,并且我完全不相信米伐特先生所说的自然的物种以奇特的方式发生变化,理由如下。根据我们的经验,突然而显著的变异,是单独地、并且间隔较长的时间,在家养生物里发生的。如果这种变异在自然状况下发生,如前面所说的,将会由于偶然的毁灭以及后来的相互杂交而容易失去;在家养状况下,除非这类突然变异由人的照顾被隔离并被特别保存起来,我们所知道的情况也是那样的。因此,如果新种像米伐特先生所假定的那种方式而突然出现,那么,几乎有必要来相信若干奇异变化了的个体会同时出现在同一个地区内,但这是和一切推理相违背的。就像在人类的无意识选择的场合中那样,这种难点只有根据逐渐进化的学说才可以避免;所谓逐渐进化是通过多少朝着任何有利方向变化的大多数个体的保存和朝相反方向变化的大多数个体的毁灭来实现的。
  许多物种以极其逐渐的方式而进化,几乎是无可怀疑的。许多自然的大科里的物种甚至属,彼此是这样地密切近似,以致难以分别的不在少数。在各个大陆上,从北到南,从低地到高地等等,我们可以看到许多密切相似的或代表的物种;在不同的大陆上,我们有理由相信它们先前曾经是连续的,也可以看到同样的情形。但是,在作这些和以下的叙述时,我不得不先提一提以后还要讨论的问题,看一看环绕一个大陆的许多岛屿,那里的生物有多少只能升到可疑物种的地位。如果我们观察过去的时代,拿刚刚消逝的物种与今日还在同一个地域内生存的物种相比较;或者拿埋存在同一地质层的各亚层内的化石物种相比较,情形也是这样。显然,许许多多的物种与现今依然生存的或近代曾经生存过的<敏感詞>物种的关系,是极其密切的;很难说这等物种是以突然的方式发展起来的。同时不要忘记,当我们观察近似物种的、而不是不同物种的特殊部分时,有极其微细的无数级进可以被追踪出来,这等微细的级进可以把大不相同的构造连接起来。
  许多事实,只有根据物种由极微细的步骤发展起来的原理,才可以得到解释。例如,大属的物种比小属的物种在彼此关系上更密切,而且变种的数目也较多。大属的物种又像变种环绕着物种那样地集成小群;它们还有类似变种的<敏感詞>方面,我在第二章里已经说明过了。根据同一个原则,我们能够理解,为什么物种的性状比属的性状更多变异;以及为什么以异常的程度或方式发展起来的部分比同一物种的<敏感詞>部分更多变异。在这方面还可以举出许多类似的事实。
  虽然产生许多物种所经过的步骤,几乎肯定不比产生那些分别微小变种的步骤为大;但是还可以主张,有些物种是以不同的和突然的方式发展起来的。不过要作这样承认,不可没有坚强的证据。昌西·赖特先生曾举出一些模糊的而且在若干方面有错误的类比来支持突然进化的观点,如说无机物质的突然结晶,或具有小顶的椭圆体从一小面陷落至另一小面;这些类比几乎是没有讨论的价值的。然而有一类事实,如在地层里突然出现新而不同的生物类型,最初一看,好像能支持突然发展的信念。但是这种证据的价值全然决定于与地球史的辽远时代有关的地质记录是否完全。如果那记录像许多地质学者所坚决主张的那样,是片断的话,那末,新类型好像是突然出现的说法,就不值得奇怪了。
  除非我们承认转变就像米伐特先生所主张的那样巨大,如鸟类或蝙蝠的翅膀是突然发展的,或者三趾马会突然变成马,那末,突然变异的信念,对于地层里相接连锁的缺乏,不会提供任何说明。但是对于这种突然变化的信念,胚胎学却提出了强有力的反对。众所周知,鸟类和蝙蝠的翅膀,以及马和别种走兽的腿,在胚胎的早期是没有区别的,它们后来以不可觉察的微细步骤分化了。如以后还要说到的,胚胎学上一切种类的相似性可作如下的解释,即现存物种的祖先在幼小的早期以后,发生了变异,并且把新获得的性状传递给相当年龄的后代。这样,胚胎几乎是不受影响的,并且可作为那个物种的过去情况的一种纪录。因此,现存物种在发育的最初阶段里,与属于同一纲的古代的、绝灭的类型常常十分相似。按照这种胚胎相似的观点,事实上按照任何观点,都不能相信一种动物会经过上述那样巨大而突然的转变;何况在它的胚胎的状态下,一点也找不到任何突然变异的痕迹;它的构造的每一个微细之点,都是以不可觉察的微细步骤发展起来的。
  如果相信某种古代生物类型通过一种内在力量或内在倾向而突然转变为,例如,有翅膀的动物,那么他就几乎要被迫来假设许多个体都同时发生变异,这是与一切类比的推论相违背的。不能否认,这等构造上的突然而巨大的变化,与大多数物种所明显进行的变化是大不相同的。进而他还要被迫来相信,与同一生物的<敏感詞>一切部分美妙地相适应的、以及与周围条件美妙地相适应的许多构造都是突然产生的;并且对于这样复杂而奇异的相互适应,他就不能举出丝毫的解释来了。他还要被迫来承认,这等巨大而突然的转变在胚胎上不曾留下一点痕迹。依我看来,承认这些,就是走进了奇迹的领域,而离开科学的领域了。
回复

使用道具 举报

19
 楼主| 发表于 2008-1-20 13:47:48 | 只看该作者
第八章 本能
本能可以与习性比较,但它们的起源不同——本能的级进——蚜虫和蚁——本能是变异的——家养的本能,它们的起源——杜鹃、牛鸟、驼鸟以及寄生蜂的自然本能——养奴隶的蚁——蜜蜂,它的营造蜂房的本能——本能和构造的变化不必同时发生——自然选择学说应用于本能的难点——中性的或不育的昆虫——提要。
  许多本能是如此不可思议,以致它们的发达在读者看来大概是一个足以推翻我的全部学说的难点。我在这里先要声明一点,就是我不准备讨论智力的起源,就如我未曾讨论生命本身的起源一样。我们所要讨论的,只是同纲动物中本能的多样性、以及<敏感詞>精神能力的多样性的问题。
  我并不试图给本能下任何定义,容易阐明,这一名词普通包含着若干不同的精神活动;但是,当我们说本能促使杜鹃迁徙并使它们把蛋下在别种鸟巢里,每一个人都知道这是什么意义。我们自己需要经验才能完成的一种活动,而被一种没有经验的动物、特别是被幼小动物所完成时,并且许多个体并不知道为了什么目的却按照同一方式去完成时,一般就被称为本能。但是我能阐明,这些性状没有一个是普遍的。如于贝尔(Pierre Huber)所说的,甚至在自然系统中是低级的那些动物里,小量的判断或理性也常发生作用。
  弗·居维叶(Frederick Cuvier)以及若干较老的形而上学者们曾把本能与习性加以比较。我想,这一比较,对于完成本能活动时的心理状态,提供了一个精确的观念,但不一定涉及到它的起源。许多习惯性活动是怎样地在无意识下进行,甚至不少直接与我们的有意识的意志相反!然而意志和理性可以使它们改变。习性容易与<敏感詞>习性、与一定的时期、以及与身体的状态相联系。习性一经获得,常常终生保持不变。可以指出本能和习性之间的<敏感詞>若干类似之点。有如反复歌唱一个熟知的歌曲,在本能里也是一种活动节奏式地随着另一活动;如果一个人在歌唱时被打断了,或当他反复背诵任何东西时被打断了,一般地他就要被迫重新走回头路,以恢复已经成为习惯的思路;胡伯尔发见能够制造很复杂茧床的青虫(caterpillar)就是如此;因为,如果在它完成构造第六个阶段时,把它取出,放在只完成构造第三个阶段的茧床里,这个青虫仅重筑第四、第五、第六个阶段的构造。然而,如果把完成构造第三个阶段的青虫,放在已完成构造第六个阶段的茧床里,那么它的工作已大部完成了,可是并没有从这里得到任何利益,于是它感到十分失措,并且为了完成它的茧床,它似乎不得不从构造第三个阶段开始(它是从这里离开的),就这样它试图去完成已经完成了的工作。
  如果我们假定任何习惯性的活动能够遗传,——可以指出,有时确有这种情形发生,——那么原为习性和原为本能之间,就变得如此密切相似,以致无法加以区别。如果莫扎特(Mozart)不是在三岁时经过极少的练习就能弹奏钢琴,而是全然没有练习就能弹奏一曲,那么可以说他的弹奏确实是出于本能的了。但是假定大多数本能是由一个世代中的习性得来的,然后遗传给以后诸世代,则是一个严重的错误。能够清楚地示明,我们所熟知的最奇异的本能,如蜜蜂的和许多蚁的本能,不可能是由习性得来的。
  普遍承认本能对于处在现今生活条件之下的各个物种的安全,有如肉体构造一样的重要。在改变了的生活条件下,本能的微小变异大概有利于物种,至少是可能的;那末,如果能够指出,本能虽然很少发生变异,但确曾发生过变异,我就看不出自然选择把本能的变异保存下来并继续累积到任何有利的程度,存在有什么难点。我相信,一切最复杂的和奇异的本能就是这样起源的。使用或习性引起肉体构造的变异,并使它们增强,而不使用使它们缩小或消失,我并不怀疑本能也是这样的。但我相信,在许多情形里,习性的效果,同所谓本能自发变异的自然选择的效果相比,前者是次要的。产生身体构造的微小偏差有一些未知原因,同样地本能自发变异也是由未知原因引起的。
  除非经过许多微小的、然而有益的变异之缓慢而逐渐的积累,任何复杂的本能大概不可能通过自然选择而产生。因此,像在身体构造的情形里一样,我们在自然界中所寻求的不应是获得每一复杂本能的实际过渡诸级,——因为这些级只能在各个物种的直系祖先里才能找到,——但我们应当从旁系系统里去寻求这些级的一些证据;或者我们至少能够指出某一种类的诸级是可能的;而我们肯定能够做到这一点,考虑到除了欧洲和北美洲以外,动物本能还极少被观察过,并且关于绝灭物种的本能,更是全无所知,所以使我感到惊异的是,最复杂本能所赖以完成的诸级能够广泛的被发见。同一物种在生命的不同时期或一年中的不同季节、或被放置在不同的环境条件下等等而具有不同的本能,这就往往会促进本能的变化;在这种情形下,自然选择大概会把这种或那种本能保存下来。可以阐明,同一物种中本能的多样性在自然界中也是存在的。
  还有,像在身体构造的情形里那样,各个物种的本能都是为了自己的利益,据我们所能判断的,它从来没有完全为了<敏感詞>物种的利益而被产生过,这和我的学说也是符合的。我知道有一个极其有力的事例,表明一种动物的活动从表面看来完全是为了别种动物的利益,如于贝尔最初观察的,这就是蚜虫自愿地把甜的分泌物供给蚂蚁:它们这样做之出于自愿可由下列事实来说明。我把一株酸模植物(dock-plant)上的所有蚂蚁全部捕去,并且在数小时内不让它们回来,此外留下了约十二只蚜虫。过了这一段时间,我确实觉得蚜虫要进行分泌了。我用放大镜观察了一些时候,但没有一个分泌的,于是,我尽力模仿蚂蚁用触角触动它们那样地,用一根毛轻轻地触动它们和拍打它们,但还没有一只分泌;随后我让一只蚂蚁去接近它们,从它那慌忙跑走的样子看来,它好像立刻觉得它发见了何等丰富的食物,于是它开始用触角去拨蚜虫的腹部,先是这一只,然后那一只;当各蚜虫一经觉到它的触角时,即刻举起腹部,分泌出一滴澄清的甜液,蚂蚁便慌忙地把这甜液吞食了。甚至十分幼小的蚜虫也有这样的动作,可见这种活动是本能的,而不是经验的结果。根据于贝尔的观察,蚜虫对于蚂蚁肯定没有厌恶的表示;如果没有蚂蚁,它们最后要被迫排出它们的分泌物。但是,因为排泄物极黏,如果被取去,无疑对于蚜虫是便利的,所以它们分泌大概不是专为蚂蚁的利益。虽然不能证明任何动物会完全为了<敏感詞>物种的利益而活动,然而各个物种却试图利用<敏感詞>物种的本能,正像利用<敏感詞>物种的较弱的身体构造一样。这样,某些本能就不能被看作是绝对完全的;但是详细讨论这一点以及<敏感詞>类似之点,并不是必不可少的,所以,这里就省略了。
  本能在自然状态下有某种程度的变异以及这些变异的遗传既然是自然选择的作用所不可少的,那末就应该尽量举出许多事例来;但是篇幅的缺乏,限制我不能这样做。我只能断言,本能确实是变异的——例如迁徙的本能,不但在范围和方向上能变异,而且也会完全消失,鸟巢也是如此,它的变异部分地依存于选定的位置以及居住地方的性质和气候,但常常由于全然未知的原因而发生变异。奥杜旁曾举出几个显著的例子,说明美国北部和南部的同一物种的鸟巢有所不同。有过这样的质问:如果本能是变异的,为什么“当蜡质缺乏的时候,蜂没有被赋予使用别种材料的能力呢?”但是蜂能够使用什么样的别种自然材料呢?我曾看到,它们会用加过硃砂而变硬了的蜡,或者用加过猪脂而变软了的蜡来进行工作。安德鲁·奈特观察到他的蜜蜂并不勤快地采集树蜡,却用那些封蔽树皮剥落部分的蜡和松节油粘合物。最近有人指出,“蜂不搜寻花粉,却喜欢使用一种很不相同的物质,即燕麦粉。对于任何特种敌害的恐惧,必然是一种本能的性质,这从未离巢的雏鸟身上可以看到这种情形,虽然这种恐惧可由经验或因看见<敏感詞>动物对于同一敌害的恐惧而被强化。对于人类的恐惧,如我在他处所指出的,栖息在荒岛上的各种动物是慢慢获得的。甚至在英格兰,我们也看到这样的一个事例,即一切大形鸟比小形鸟更怕人,因为大形鸟更多地遭受过人们的迫害。英国的大形鸟更怕人,可以稳妥地归于这个原因;因为在无人岛上,大形鸟并不比小形鸟更怕人些;喜鹊(magpie)在英格兰很警惕,但在挪威却很驯顺,埃及的羽冠乌鸦(hooded crow)也是不怕人的。
  有许多事实可以示明,在自然状态下产生的同类动物的精神能力变异很大。还有若干事例可以举出,表明野生动物中有偶然的、奇特的习性,如果这种习性对于这个物种有利,就会通过自然选择产生新的本能。但是我十分知道,这等一般性的叙述,如果没有详细的事实,在读者的心目中只会产生微弱的效果。我只好重复说明,我保证我不说没有可靠证据的话。
  在家养动物中习性或本能的遗传变化

  如果大略地考察一下家养下的少数例子,则自然状态下本能的遗传变异的可能性甚至确实性将被加强。我们由此可以看到习性和所谓自发变异的选择,在改变家养动物精神能力上所发生的作用。众所周知,家养动物的精神能力的变异是何等之大。例如猫,有的自然地喜捉大鼠,有的则喜捉小鼠,并且我们知道这种倾向是遗传的。据圣约翰先生(Mr.St.John)说,有一只猫常捕捉猎鸟(game-bird)回家,另一只猫捕捉山兔或兔,还有一只猫在沼泽地上行猎,几乎每夜都要捕捉一些山鹬(woodcock)或沙锥(snipe)。有许多奇异而真实的例子可以用来说明与某种心理状态或某一时期有关的各种不同痹性和嗜好以及怪癖,都是遗传的。但是让我们看看众所熟知的狗的品种的例子;毫无疑问,把幼小的向导狗第一次带出去时,它有时能够指示猎物的所在,甚至能够援助别的狗(我曾亲自看见过这种动人的情形);拾物猎狗(retriever)确实在某种程度上可以把衔物持来的特性遗传下去;牧羊狗并不跑在绵羊群之内,而有在羊群周围环跑的倾向。幼小动物不依靠经验而进行了这些活动,同时各个个体又差不多以同样方式进行了这些活动,并且各品种都欢欣鼓舞地而且不知道目的地去进行这些活动——幼小的向导狗并不知道它指示方向是在帮助它的主人,有如白色蝴蝶并不知道为什么要在甘蓝的叶子上产卵一样——所以我无法看出这些活动在本质上与真正的本能有什么区别。如果我们看见一种狼,在它们幼小而且没有受过任何训练时,一旦嗅出猎物,它先站着不动,像雕像一般,随后又用特别的步法慢漫爬过去;又看见另一种狼环绕鹿群追逐,却不直冲,以便把它们赶到远的地点去,这时我们必然要把这等活动叫作本能。被称为家养下的本能,的确远不及自然的本能那么固定;但是家养下的本能所蒙受的选择作用也极不严格,而且是在较不固定的生活条件下,在比较短暂的时间内被传递下来的。
  当使不同品种的狗进行杂交时,即能很好地看出这等家养下的本能、习性以及癖性的遗传是何等强烈,并且它们混合得多么奇妙。我们知道,长躯猎狗与逗牛狗杂交,可影响前者的勇敢性和顽强性至许多世代;牧羊狗与长躯猎狗杂交,则使前者的全族都得到捕捉山兔的倾向。这等家养下的本能,如用上述的杂交方法来试验时,是与自然的本能相类似的,自然的本能也按照同样的方式奇异地混合在一起,而且在一个长久的时间内表现出其祖代任何一方的本能的痕迹:例如,勒鲁瓦(Le Roy)描述过一只狗,它的曾祖父是一只狼;它只有一点表示了它的野生祖先的痕迹,即当呼唤它时,不是直线地走向它的主人。
  家养下的本能有时被说成为完余由长期继续的和强迫养成的习性所遗传下来的动作;但这是不正确的。从没有人会想像去教或者曾经教过翻飞鸽去翻飞,——据我所见到的,一只幼鸽,从不曾见过鸽的翻飞,可是它却会翻飞。我们相信,曾经有过一只鸽子表现了这种奇怪习性的微小倾向,并且在连续的世代中,经过对于最好的个体的长期选择,乃造成像今日那样的翻飞鸽;格拉斯哥(Glasgow)附近的家养翻飞鸽,据布伦特先生(Mr.Brent)告诉我说,一飞到十八英寸高就要翻筋斗。假如未曾有过一只狗自然具有指示方向的倾向,是否会有人想到训练一只狗去指示方向,是可怀疑的;人们知道这种倾向往往见于纯种的狟里,我就曾看见过一次这种指示方向的行为:如许多人设想的,这种指示方向的行为大概不过是一个动物准备扑击它的猎物之前停留一忽时间的延长而已。当指示方向的最初倾向一旦出现时,此后在每一世代中的有计划选择和强迫训练的遗传效果将会很快地完成了这个工作;而且无意识选择至今仍在继续进行,因为每一个人虽然本意不在改进品种,但总试图获得那些最善于指示方向的和狩猎的狗。另一方面,在某些情形下,仅仅习性一项已经足够了;没有一种动物比“野兔(wild rabbit)更难以驯服的了;也几乎没有一种动物比驯服的幼小家兔更驯顺的了,但我很难设想家兔仅仅为了驯服性才常常被选择下来;所以从极野的到极驯服的性质的遗传变化,至少大部分必须归因于习性和长久继续的严格圈养。
  在家养状况下,自然的本能可以消失:最显著的例子见于很少孵蛋的、或从不孵蛋的那些鸡品种,这就是说,它们从来不喜孵蛋。仅仅由于习见,才妨碍了我们看出家养动物的心理曾经有过何等巨大的和持久的变化。对于人类的亲爱已经变成了狗的本能,是很少可以怀疑的。一切狼、狐、胡狼(jackal)以及猫属的物种纵使在驯养后,也极其锐意地去攻击鸡、绵羊和猪;火地和澳洲这些地方的未开化人不养狗,因为他们把小狗拿到家里来养,曾发见这种倾向是不能矫正的。另一方面,我们的已经文明化了的狗,甚至在十分幼小的时候,也很少必要去教它们不要攻击鸡、绵羊和猪的!无疑它们会偶尔攻击一下的,于是就要遭到一顿打;如果还不能得到矫正,它们就会被弄死;这样,通过遗传、习性和某种程度的选择,大概协同地使我们的狗文明化了。另一方面,小鸡完全由于习性,已经消失了对于狗和猫的惧怕的本能;而这种本能本来是它们原来就有的。赫顿上尉(Captain Hutton)曾经告诉过我,原种鸡——印度野生鸡(Gallus bakkiva)——的小鸡,当由一只母鸡抚养时,最初野性很大。在英格兰,由一只母鸡抚养的小雉鸡,也是这样。并不是小鸡失去了一切惧怕,而只是失去了对于狗和猫的惧怕,因为,如果母鸡发出一声报告危险的叫声,小鸡便从母鸡的翼下跑开(小火鸡尤其如此),躲到四周的草里或丛林里去了。这显然是一种本能的动作,便于母鸟飞走,就如我们在野生的陆栖鸟类里所看到的那样。但是我们的小鸡还保留着这种在家养状况下已经变得没有用处的本能,因为母鸡由于不使用的缘故,已经几乎失掉飞翔的能力了。
  因此,我们可以断定,动物在家养下可以获得新的本能;而失去自然的本能,这一部分是由于习性,一部分是由于人类在连续世代中选择了和累积了特殊的精神习性和精神活动,而这些习性和活动的最初发生,是由于偶然的原因——因为我们的无知无识,所以必须这样称呼这种原因。在某些情形下,只是强制的习性一项,已足以产生遗传的心理变化;在另外一些情形下,强制的习性就不能发生作用,一切都是有计划选择和无意识选择的结果:但是在大多数情形下,习性和选择大概是同时发生作用的。

  特种本能

  我们只要考察少数事例,大概就能很好地理解本能在自然状态下怎样由于选择作用而被改变的。我只选择三个例子,——即,杜鹃在别种鸟巢里下蛋的本能;某些蚂蚁养奴隶的本能,以及蜜蜂造蜂房的本能。博物学者们已经把后二种本能,一般地而且恰当地列为一切已知本能中最奇异的本能了。
  杜鹃的本能——某些博物学者假定,杜鹃的这种本能的比较直接的原因,是她并不每日下蛋,而间隔二日或三日下蛋一次;所以,她如果自己造巢,自己孵蛋,则最先下的蛋便须经过一些时间后才能得到孵抱,或者在同一个巢里就会有不同龄期的蛋和小鸟了。如果是这样,下蛋和孵蛋的过程就会很长而不方便,特别是雌鸟在很早的时期就要迁徙,而最初孵化的小鸟势必就要由雄鸟来单独哺养。但是美洲杜鹃就处于这样的困境;固为她自己造巢,而且要在同一时期内产蛋和照顾相继孵化的幼鸟。有人说美洲杜鹃有时也在别种鸟巢里下蛋,赞同和否认这种说法的都有;但我最近从衣阿华(Iowa)的梅里尔博士(Dr.Merrell)那里听到,他有一次在伊里诺斯(IlIinois)看到在蓝色松鸦(Garrulus cristatus)的巢里有一只小杜鹃和一只小松鸦;并且因为这两只小鸟都已差不多生满羽毛,所以对于它们的鉴定是不会错误的。我还可以举出各种不同的鸟常常在别种鸟巢里下蛋的若干事例。现在让我们假定欧洲杜鹃的古代祖先也有美洲杜鹃的习性,她们也偶尔在别种鸟巢里下蛋。如果这种偶尔在别种鸟巢里下蛋的习性,通过能使老鸟早日迁徙或者通过<敏感詞>原因,而有利于老鸟;或者,如果小鸟,由于利用了<敏感詞>物种的误养的本能,比起由母鸟来哺养更为强壮——因为母鸟必须同时照顾不同龄期的蛋和小鸟,而不免受到牵累,那么老鸟或被错误哺养的小鸟都会得到利益。以此类推,我们可以相信,这样哺养起来的小鸟由于遗传大概就会具有它们的母鸟的那种常有的和奇特的习性,并且当它们下蛋时就倾向于把蛋下在别种鸟的巢里,这样,它们就能够更成功地哺养它们的幼鸟。我相信杜鹃的奇异本能会由这种性质的连续过程而被产生出来。还有,最近米勒以充分的证据确定了,杜鹃偶尔会在空地上下蛋,孵抱,并且哺养她的幼鸟。这种少见的事情大概是复现久已失去了的原始造巢本能的一种情形。
  有人反对说,我对杜鹃没有注意到<敏感詞>有关的本能和构造适应,据说这些必然是相互关联的。但在一切情形下,空论我们所知道的一个单独物种的一种本能是没有用处的,因为直到现在指引我们的还没有任何事实。直到最近,我们所知道的只有欧洲杜鹃的和非寄生性美洲杜鹃的本能;现在,由于拉姆齐先生(Mr.Ram-say)的观察,我们知道了澳洲杜鹃的三个物种的一些情形,它们是在别种鸟的巢里下蛋的。可以提起的要点有三个:第一,普通杜鹃,除了很少例外,只在一个巢里下一个蛋,以便使大形而贪吃的幼鸟能够得到丰富的食物。第二,蛋是显著地小,不大于云雀(sky-lark)的蛋,而云雀只有杜鹃四分之一那么大。我们从美洲非寄生性杜鹃所下的十分大的蛋可以推知,蛋小是一种真正的适应情形,第三,小杜鹃孵出后不久便有把义兄弟排出巢外的本能、力气,以及一种适当形状的背部,被排出的小鸟于是冻饿而死。这曾经被大胆地称为仁慈的安排,因为这样可使小杜鹃得到充足的食物)并且可使义兄弟在没有获得感觉以前就死去!
  现在讲一讲澳洲杜鹃的物种;它们虽然一般只在一个巢里下一个蛋,但在同一个巢里下二个或者甚至三个蛋的情形也不少见。青铜色杜鹃的蛋在大小上变化很大,它们的长度从八英分(lines)至十英分。为了欺骗某些养亲,或者更确切他说:为了在较短期间内得到孵化(据说蛋的大小和孵化期之间有一种关联),生下来的蛋甚至比现在还小,如果这对于这个物种有利,那么就不难相信,一个下蛋愈来愈小的族或物种大概就会这样被形成;因为小形的蛋能够比较安全地被孵化和哺养。拉姆齐先生说,有两种澳洲的杜鹃,当它们在没有掩蔽的巢里下蛋时,特别选择那样一些鸟巢,其中蛋的颜色和自己的相似。欧洲杜鹃的物种在本能上明显地表现了与此相似的倾向,但相反的情形也不少,例如,她把暗而灰色的蛋,下在篱莺(hedge-warbler)巢中,与其亮蓝绿色的蛋相混。如果欧洲杜鹃总是不变地表现上述本能,那么在一切被假定共同获得的那些本能上一定还要加上这种本能。据拉姆齐先生说,澳洲青铜色杜鹃的蛋在颜色上有异常程度的变化;所以在蛋的颜色和大小方面,自然选择大概保存了和固定了任何有利的变异。
  在欧洲杜鹃的场合中,当杜鹃孵出后的三天内,养亲的后代一般都被排逐出巢外去;因为杜鹃在这时候还处于一种极其无力的状态中,所以古尔得先生(Mr。Gould)以前相信这种排逐的行为是出自养亲的。但他现在已得到关于一个小杜鹃的可靠的记载,这小杜鹃此时眼睛还闭着,并且甚至连头还抬不起来,却把义兄弟排逐出巢外,这是实际看到的情形。观察者曾把它们中间的一只拾起来又放在巢里,但又被排逐出去了。至于获得这种奇异而可惜的本能的途径,如果小杜鹃在刚刚孵化后就能得到尽量多的食物对于它们是极其重要的话(大概确系如此),那么我想在连续世代中逐渐获得为排逐行动所必需的盲目欲望、力量以及构造,是不会有什么特别困难的;因为具有这种最发达的习性和构造的小杜鹃,将会最安全地得到养育。获得这种独特本能的第一步,大概仅仅是在年龄和力量上稍微大了一些的小杜鹃的无意识的乱动;这种习性此后得到改进,并且传递给比较幼小年龄的杜鹃。我看不出这比下述情形更难理解,即<敏感詞>鸟类的幼鸟在未孵化时就获得了啄破自己蛋壳的本能——或者如欧文所说的,小蛇为了切破强韧的蛋壳在上颚获得了一种暂时的锐齿。因为,如果身体的各部分在一切龄期中都易于发生个体变异,而且这变异在相当龄期或较早龄期中有被遗传的倾向——这是无可争辩的主张,——那末,幼体的本能和构造,确和成体的一样,能够慢慢地发生改变;这二种情形一定与自然选择的全部学说存亡与共。
  牛鸟属(Molothrus)是美洲鸟类中很特别的一属,与欧洲椋鸟(starling)相似,它的某些物种像杜鹃那样地具有寄生的习性:并且它们在完成它们的本能上表现了有趣的级进。褐牛鸟(Molothrus badius)的雌鸟和雄鸟,据优秀的观察家赫得森先生说,有时群居而过着<敏感詞>的生活,有时则过着配偶的生活。它们或者自己造巢,或者夺取别种鸟的巢,偶然也把他种鸟的幼鸟抛出巢外。它们或者在这个据为己有的巢内下蛋,或者,真奇怪,在这巢的顶上为自己营造另一个巢。它们通常是孵自己的蛋和哺养自己的小鸟的;但据赫得森先生说,大概它们偶尔也是寄生的,因为他曾看到这个物种的小鸟追随着不同种类的老鸟,而且叫喊着要求它们哺喂。牛鸟属的另一物种,多卵牛鸟(M.bonariensis)的寄生习性比上述物种,更为高度发达,但是距离完全化还很遥远。这种鸟,据知道的,一定要在他种鸟的巢里下蛋;但是值得注意的是,有时候数只这种鸟会合造一个自己的不规则的而且不整洁的巢,这种巢被放置在特别不适宜的地方,如在大蓟(thistle。)的叶子上,然而就赫得森先生所能确定的说来,它们从来不会完成自己的巢。它们常在他种鸟的一个巢里下如此多的蛋,——十五到二十个——以致很少被孵化,或者完全不孵化。还有,它们有在蛋上啄孔的奇特习性,无论自己的或所占据的巢里的养亲的蛋皆被啄掉。它们还在空地上随便产下许多蛋,那些蛋当然就这样被废弃了。第三个物种,北美洲的单卵牛鸟(M.pecoris),已经获得了杜鹃那样完全的本能,因为它从来不在一个别种鸟巢里下一个以上的蛋,所以小鸟可以有保证地得到哺育。赫得森先生是坚决不相信进化的人,但是他看到了多卵牛鸟的不完全本能似乎也大受感动,他因此引用了我的话,并且问:“我们是否必须不认为这等习性是特别赋予的或特创的本能,而认为是一个普遍法则——过渡——的小小结果呢?”
  各种不同的鸟,如上所述,偶尔会把它们的蛋下在别种鸟的巢里。这种习性,在鸡科里并非不普通,并且对于鸵鸟的奇特本能提供了若干解说。在鸵鸟科里几只母鸟共同地先在一个巢里,然后又在另一个巢里下少数的蛋;由雄鸟去孵抱这些蛋。这种本能或者可以用下述事实来解释,即雌鸟下蛋很多,但如杜鹃一样,每隔两天或三天才下一次。然而美洲鸵鸟的这种本能,与牛鸟的情形一样,还没有达到完全化;因为有很多的蛋都散在地上,所以我在一天的游猎中,就拾得了不下二十个散失的和废弃的蛋。
回复

使用道具 举报

20
 楼主| 发表于 2008-1-20 13:48:18 | 只看该作者
许多蜂是寄生的,它们经常把卵产在别种蜂的巢里,这种情形比杜鹃更可注意;就是说,这等蜂随着它们的寄生习性,不但改变了它们的本能,而且改变了它们的构造;它们不具有采集花粉的器具,如果它们为幼蜂贮蓄食料,这种器具是必不可少的。泥蜂科(Sphegida;形似胡蜂、的某些物种同样也是寄生的;法布尔最近曾提出良好的理由使我们相信:一种小唇沙蜂(Tachytes nigra)虽然通常都自己造巢,而且为自己的幼虫贮蓄被麻痹了的食物,但如果发见别种泥蜂所造的和贮蓄有食物的巢,它便会加以利用,而变成临时的寄生者。这种情形和牛鸟或杜鹃的情形是一样的,我觉得如果一种临时的习性对于物种有利益,同时被害的蜂类,不会因巢和贮蓄的食物被无情夺取而遭到绝灭,自然选择就不难把这种临时的习性变成为永久的。
  养奴隶的本能——这种奇妙的本能,是由于贝尔最初在红褐蚁(Formica[Polyerges〕rufescens)里发见的,他是一位甚至比他的著名的父亲更为优秀的观察者。这种蚂蚁绝对依靠奴隶而生活;如果没有奴隶的帮助,这个物种在一年之内就一定要绝灭。雄蚁和能育的雌蚁不从事任何工作,工蚁即不育的雌蚁虽然在捕捉奴隶上极为奋发勇敢,但并不做<敏感詞>任何工作。它们不能营造自己的巢,也不能哺喂自己的幼虫。在老巢已不适用,势必迁徙的时候,是由奴蚁来决定迁徙的事情,并且实际上它们把主人们衔在颚间搬走,主人们是这样的不中用,当于贝尔捉了三十个把它们关起来,而没有一个奴蚁时,虽然那里放入它们最喜爱的丰富食物,而且为了刺激它们进行工作又放入它们自己的幼虫和蛹,它们还是一点也不工作;它们自己甚至不会吃东西,因而许多蚂蚁就此饿死了。于贝尔随后放进一个奴蚁——黑蚁(F.fusca),她即刻开始工作,哺喂和拯救那些生存者;并且营造了几间虫房,来照料幼虫,一切都整顿得井井有条。有什么比这等十分肯定的事实更为奇异的呢、如果我们不知道任何<敏感詞>养奴隶的蚁类,大概就无法想像如此奇异的本能曾经是怎样完成的。
  另一个物种——血蚁(Formica sanguinea),同样也是养奴隶的蚁,也是由于贝尔最初发见的。这个物种发见于英格兰的南部,英国博物馆史密斯先生(Mr.F.Smith)研究过它的习性,关于这个问题以及<敏感詞>问题,我深深感激他的帮助。虽然我充分相信于贝尔和史密斯先生的叙述,但我仍然以怀疑的心情来处理这个问题,因为任何人对于养奴隶的这种极其异常本能的存在有所怀疑,大概都会得到谅解。因此,我愿意稍微详细地谈谈我作的观察。我曾掘开十四个血蚁的窠,并且在所有的集中都发见了少数的奴蚁。奴种(黑蚁)的雄蚁和能育的雌蚁,只见于它们自己固有的群中,在血蚁的集中从来没有看见过它们。黑色奴蚁,不及红色主人的一半大,所以它们在外貌上的差异是大的。当巢被微微扰动时,奴蚁偶尔跑出外边来,像它们主人一样地十分激动,并且保卫它们的巣;当窠被扰动得很厉害,幼虫和蛹已被暴露出来的时候,奴蚁和主人一齐奋发地把它们运送到安全的地方去。因此,奴蚁显然是很安于它们的现状的。在连续三个年头的六月和七月里,我在萨立(Surrey)和萨塞克斯(Sussex),曾对几个巢观察了几个小时,但从来没有看到一个奴蚁自一个巢里走出或走进。在这些月份里,奴蚁的数目很少,因此我想当它们数目多的时候,行动大概就不同了;但史密斯先生告诉我说,五月、六月、以及八月间,在萨立和汉普郡(Hampshire),他在各种不同的时间内注意观察了它们的巢,虽然在八月份奴蚁的数目很多,但也不曾看到它们走出或走进它们的巢。因此,他认为它们是严格的家内奴隶。而主人却不然,经常看到它们不断地搬运着造巢材料和各种食物。然而在1860年七月里,我遇见一个奴蚁特别多的蚁群,我观察到有少数奴蚁和主人混在一起离巢出去,沿着同一条路向着约二十五码远的一株高苏格兰冷杉前进,它们一齐爬到树上去,大概是为了找寻蚜虫或胭脂虫(cocci)的。于贝尔有过许多观察的机会,他说,瑞士的奴蚁在造案的时候常常和主人一起工作,而它们在早晨和晚间则单独看管门户;于贝尔还明确他说,奴蚁的主要职务是搜寻蚜虫。两个国家里的主奴两蚁的普通习性如此不同,大概仅仅因为在瑞士被捕捉的奴蚁数目比在英格兰为多。
  有一次,我幸运地看到了血蚁从一个巢搬到另一个巢里去,主人们谨慎地把奴蚁带在颚间,并不像红褐蚁的情形,主人须由奴隶带走,这真是极有趣的奇观。另一天,大约有二十个养奴隶的蚁在同一地点猎取东西,而显然不是找寻食物,这引起了我的注意;它们走近一种奴蚁——独立的黑蚁群,并且遭到猛烈的抵抗;有时候有三个奴蚁揪住养奴隶的血蚁的腿不放,养奴隶的蚁残忍地弄死了这些小抵抗者,并且把它们的尸体拖到二十九码远的巢中去当食物;但它们不能得到一个蛹来培养为奴隶。于是我从另一个巢里掘出一小团黑蚁的蛹,放在邻近战斗的一处空地上,于是这班暴君热切地把它们捉住并且拖走,它们大概以为毕竟是在最后的战役中获胜了。
  在同一个时候,我在同一个场所放下另一个物种——黄蚁(F.flava)的一小团蛹,其上还有几只攀附在案的破片上的这等小黄蚁。如史密斯先生所描述的,这个物种有时会被用作奴隶,纵使这种情形很少见。这种蚁虽然这么小,但极勇敢,我看到过它们凶猛地攻击别种蚁。有一个事例,使我惊奇,我看见在养奴隶的血蚁巢下有一块石头,在这块石头下是一个独立的黄蚁群;当我偶然地扰动了这两个巢的时候,这小蚂蚁就以惊人的勇敢去攻击它们的大邻居,当时我渴望确定血蚁是否能够辨别常被捉作奴隶的黑蚁的蛹与很少被捉的小形而猛烈的黄蚁的蛹,明显地它们确能立刻辨别它们;因为当它们遇到黑蚁的蛹时,即刻热切地去捉,当它们遇到黄蚁的蛹或甚至遇到它的巢的泥土时,便惊惶失措,赶紧跑开;但是,大约经过一刻钟,当这种小黄蚁都爬走之后,它们才鼓起勇气,把蛹搬走。
  一天傍晚,我看见另一群血蚁,发见许多这种蚁拖着黑蚁的尸体(可以看出不是迁徙)和无数的蛹回去,走进它们的巣内。我跟着一长行背着战利品的蚁追踪前去,大约有四十码之远,到了一处密集的石南科灌木(heath)丛,在那里我看到最后一个拖着一个蛹的血蚁出现)但我没有能够在密丛中找到被蹂躏的巣在那里。然而那巢一定就在附近,因为有两三只黑蚁极度张惶地冲出来,有一只嘴里还衔着一个自己的蛹一动不动地停留在石南的小枝顶上,并且对于披毁的家表现出绝望的神情。
  这些都是关于养奴隶的奇异本能的事实,无须我来证实。让我们看一看血蚁的本能的习性和欧洲大陆上的红褐蚁的习性有何等的不同。后一种不会造巣,不会决定自己的迁徙,不会为自己和幼蚁采集食物,甚至不会自己吃东西:完全依赖它们的无数奴蚁。血蚁则不然,它们拥有很少的奴蚁,而且在初夏奴蚁是极少的,主人决定在什么时候和什么地方应该营造新巣,并且当它们迁徙的时候,主人带着奴蚁走。瑞士和英格兰的奴蚁似乎都专门照顾幼蚁,主人单独作捕捉奴蚁的远征,瑞士的奴蚁和主人一齐工作,搬运材料回去造巢;主奴共同地,但主要是奴蚁在照顾它们的蚜虫,并进行所谓的挤乳;这样,主奴都为本群采集食物,在英格兰,通常是主人单独出去搜寻造桌材料以及为它们自己、奴蚁和幼蚁搜寻食物。所以,在英格兰,奴蚁为主人所服的劳役,比在瑞士的少得多。
  依赖什么步骤,发生了血蚁的本能,我不愿妄加臆测,但是,因为不养奴隶的蚁,据我所看到的,如果有<敏感詞>物种的蛹散落在它们的案的近旁时,也要把这些蛹拖去,所以这些本来是贮作食物的蛹,可能发育起来;这样无意识地被养育起来的外来蚁将会追随它们的固有本能,并且做它们所能做的工作。如果它们的存在,证明对于捕捉它们的物种有用,——如果捕捉工蚁比自己生育工蚁对于这个物种更有利——那么,本是采集蚁蛹供作食用的这种习性,大概会因自然选择而被加强,并且变为永久的,以达到非常不同的养奴隶的目的。本能一旦被获得,即使它的应用范围远不及英国的血蚁(如我们所看到的,这种蚁在依赖奴蚁的帮助上比瑞士的同一物种为少),自然选择大概也会增强和改变这种本能,——我们经常假定每一个变异对于物种都有用处——直到形成一种像红褐蚁那样卑鄙地依靠奴隶来生活的蚁类。
  蜜蜂营造蜂房的本能——我对这个问题不拟详加讨论,而只是把我所得到的结论的纲要说一说。凡是考察过蜂集的精巧构造的人,看到它如此美妙地适应它的目的,而下热烈地加以赞赏,他必定是一个愚钝的人。我们听到数学家说蜜蜂已实际解决了深奥的问题,它们把蜂房造成适当的形状,来容纳最大可能容量的蜜,而在建造中则用最小限度的贵重蜡质。曾有这样的说法,一个熟练的工人,用合适的工具和计算器,也很难造出真正形状的蜡质蜂房来,但是一群蜜蜂却能在黑暗的蜂箱内把它造成,随便你说这是什么本能都可以,最初一看这似乎是不可思议的,它们如何能造出所有必要的角和面,或者甚至如何能觉察出它们是正确地被完成了。但是这难点并不像最初看来那样大;我想,可以示明,这一切美妙的工作都是来自几种简单的本能。
  我研究这个问题实受沃特豪斯先生的引导。他阐明,蜂房的形状和邻接蜂房的存在有密切关系;下述观点大概只能看作是他的理论的修正,让我们看看伟大的级进原理,看看“自然”是否向我们揭露了她的工作方法。在这个简短系列的一端有土蜂,它们用它们的旧茧来贮蜜,有时候在茧壳上添加蜡质短管,而且同样也会做出分隔的、很不规则的圆形蜡质蜂房。在这系列的另一端则有蜜蜂的蜂房,它排列为二层:每一个蜂房,如所周知,都是六面柱体,六边的底边倾斜地联合成三个菱形所组成的倒角锥体。这等菱形都有一定的角度,并且在蜂窠的一面,一个蜂房的角锥形底部的三条边,正好构成了反面的三个连接蜂房的底部。在这一系列里,处于极完全的蜜蜂蜂房和简单的土蜂蜂房之间的,还有墨西哥蜂(Melipona domestica)的蜂房,于贝尔曾经仔细地描述过和绘制过这种蜂房。墨西哥蜂的身体构造介于蜜蜂和土蜂之间,但与土蜂的关系比较接近;它能营造差不多规则的蜡质蜂窠,其蜂房是圆柱形的,在那里孵化幼蜂,此外还有一些用作贮蜜的大形蜡质蜂房。这些大形的蜂房接近球状,大小差不多相等,并且聚集成不规则的一堆。这里可注意的要点是,这等蜂房经常被营造得很靠近,如果完全成为球状时,蜡壁势必就要交切或穿通;但是从来不会如此,因为这种蜂会在有交切倾向的球状蜂房之间把蜡壁造成平面的。因此,每个蜂房都是由外方的球状部分和两三个、或更多平面构成的,这要看这个蜂房与两个、三个或更多的蜂房相连接来决定。当一个蜂房连接<敏感詞>三个蜂房时,由于它们的球形是差不多大小的,所以在这种情形下,常常而且必然是三个平面连合成为一个角锥体;据于贝尔说,这种角锥体与蜜蜂蜂房的三边角锥形底部十分相像。在这里,和蜜蜂蜂房一样,任何蜂房的三个平面必然成为所连接的三个蜂房的构成部分。墨西哥蜂用这种营造方法,显然可以节省蜡,更重要的是,可以节省劳力;因为连接蜂房之间的平面壁并不是双层的,其厚薄和外面的球状部分相同,然而每一个平面壁却构成了二个房的一个共同部分。
  考虑到这种情形,我觉得如果墨西哥蜂在一定的彼此距离间营造它们的球状蜂房,并且把它们造成一样大小,同时把它们对称地排列成双层,那么这构造就会像蜜蜂的蜂桌一样地完全了。所以我写信给剑桥的米勒教授(Prof.Miller),根据他的复信我写出了以下的叙述,这位几何学家亲切的读了它并且告诉我说,这是完全正确的。
  假定我们画若干同等大小的球,它们的球心都在二个平行层上;每一个球的球心与同层中围绕它的六个球的球心相距等于或稍微小于半径x2,即半径x1.41421;并且与别一平行层中连接的球的球心相距也如上;于是,如果把这双层球的每二个球的交接面都画出来,就会形成一个双层六面柱体,这双层六面柱体互相衔接的面都是由三个菱形所组成的角锥形底部连结而成的;这个角锥形与六面柱体的边所成的角,与经过精密测量的蜜蜂蜂房的角完全相等。但是怀曼教授告诉我说,他曾做过许多仔细的测量,他说蜜蜂工作的精确性曾被过分地夸大,所以不论蜂房的典型形状怎样,它的实现纵非不可能,但也是很少见的。
  因此,我们可以稳妥地断定,如果我们能够把墨西哥蜂的不很奇异的已有本能稍微改变一下,这种蜂便能造出像蜜蜂那样十分完善的蜂房。我们必须假定,墨西哥蜂有能力来营造真正球状的和大小相等的蜂房;看到以下的情形,这就没有什么值得奇怪的了,例如:她已经能够在一定程度上做到这点,同时,还有许多昆虫也能够在树木上造成多么完全的圆柱形孔穴,这分明是依据一个固定的点旋转而成的。我们必须假定,墨西哥蜂能把蜂房排列在水平层上,正如她的圆柱形蜂房就是这样排列的。我们必须更进一步假定,而这是最困难的一件事,当几只工蜂营造它们的球状蜂房时,她能设法正确地判断彼此应当距离多少远;但是她已经能够判断距离了,所以她能经常使球状蜂房有某种程度的交切;然后把交切点用完全的平面连接起来。本来并不很奇异的本能,——不比指导鸟类造巢的本能更奇异,——经过这样的变异之后,我相信蜜蜂通过自然选择就获得了她的难以模仿的营造能力。
  这种理论可用试验来证明。仿照特盖特迈耶那先生(Mr.Tegetmeier)的例子,我把二个蜂巢分开,在它们中间放一块长而厚的长方形蜡板:蜜蜂随即开始在蜡板上凿掘圆形的小凹穴;当她们向深处凿掘这些<敏感詞>时,逐渐使它们向宽处扩展,终至变成大体具有蜂房直径的浅盆形,看起来恰像完全真正球状或者球状的一部分。下面的情形是极有趣的:当几只蜂彼此靠近开始凿掘盆形凹穴时,她们之间的距离恰使盆形凹穴得到上述宽度(大约相当于一个普通蜂房的宽度),并且在深度上达到这些盆形凹穴所构成的球体直径的六分之一,这时盆形凹穴的边便交切,或彼此穿通,一遇到这种情形时,蜂即停止往深处凿掘,并且开始在盆边之间的交切处造起平面的蜡壁,所以,每一个六面柱体并不是像普通蜂房的情形那样,建筑在三边角锥体的直边上面,而是建造在一个平滑盆形的扇形边上面的。
  然后我把一块薄而狭的涂有朱红色的、其边如刃的蜡片放进蜂箱里去,以代替以前所用的长方形厚蜡板。于是蜜蜂即刻像以前一样地在蜡片的两面开始凿掘一些彼此接近的盆形<敏感詞>。但蜡片是如此之薄,如果把盆形<敏感詞>的底掘得像上述试验的一样深,两面便要彼此穿通了。然而蜂并不会让这种情形发生,她们到了适当时候,便停止开掘;所以那些盆形<敏感詞>,只要被掘得深一点时,便出现了平的底,这等由剩下来而未被咬去的一小薄片朱红色蜡所形成的平底,根据眼睛所能判断的,正好位于蜡片反面的盆形<敏感詞>之间的想像上的交切面处。在反面的盆形<敏感詞>之间遗留下来的菱形板,大小不等,因为这种蜡片不是自然状态的东西,所以不能精巧地完成工作。虽然如此,蜂在朱红色蜡片的两面,还能浑圆地咬去蜡质,并使盆形加深,其工作速度必定是差不多一样的,这是为了能够成功地在交切面处停止工作,而在盆形<敏感詞>之间留下平的面。
  考虑到薄蜡片是何等的柔软之后,我想,当蜂在蜡片的两面工作时,不会有什么困难就能觉察到什么时候咬到适当的薄度,于是停止工作。在普通的蜂窠里,我认为蜂在两面的工作速度,并不永远能够成功地完全相等;因为,我曾注意过一个刚开始营造的蜂房底部上的半完成的菱形板,这个菱形板在一面稍为凹进,我想像这是因为蜂在这面掘得太快的缘故,它的另一面则凸出,这是因为蜂在这面工作得慢了一些的缘故,在一个显著的事例里,我把这蜂窠放口蜂箱里去,让蜂继续工作一个短时间,然后再检查蜂房,我发现菱形板已经完成,并且已经变成完全平的了:这块蜡片是极薄的,所以绝对不可能是从凸的一方面把蜡咬去,而做成上述的样子;我猜测这种情形大概是站在反面的蜂,把可塑而温暖的蜡正好推压到它的中间板处,使它弯曲(我试验过,很容易做),这样就把它弄平了。
  从朱红蜡片的试验里,我们可以看出:如果蜂必须为自己建造一堵蜡质的薄壁时,它们便彼此站在一定距离,以同等的速度凿掘下去,并且努力做成同等大小的球状空室,但永远不会让这些空室彼此穿通,这样,它们就可造成适当形状的蜂房。如果检查一下正在建造的蜂案边缘,就可明显地看出蜂先在蜂巢的周围造成一堵粗糙的围墙或缘边;并且它们就像营造每一个蜂房那样地,经常圆圆地工作着,把这围墙从两面咬去,它们并不在同一个时间内营造任何一个蜂房的三边角锥形的整个底部,通常最先营造的是,位于正在建造的极端边缘的一块菱形板,或者先造二块菱形板,这要看情形而定;并且,在没有营造六面壁之前,它们绝不完成菱形板的上部的边。这些叙述的某些部分和应享盛誉的老于贝尔所说的,有所不同,但我相信这些叙述是正确的;如果有篇幅,我将阐明这和我的学说是一致的。
  于贝尔说,最初的第一个蜂房是从侧面相平行的蜡质小壁凿掘造出来的,就我所看到的,这一叙述并不严格正确;最初着手的经常是一个小蜡兜;但在这里我不拟详加讨论。我们知道,在蜂房的构造里,凿掘起着何等重要的作用;但如果设想蜂不能在适当的位置——即沿着二个连接的球形体之间的交切面——营造粗糙的蜡壁,可能是一个极大的错误。我有几件标本明显指出它们是能够这样做的。甚至在环绕着建造中的蜂窠周围的粗糙边缘即蜡壁上,有时候也可观察到弯曲的情形,这弯曲所在的位置相当于未来蜂房的菱形底面所在的位置。但在一切场合中,粗糙的蜡壁是由于咬掉两面的大部分蜡而完成的。蜂的这种营造方法是奇妙的;它们总是把最初的粗糙墙壁,造得比最后要留下的蜂房的极薄的壁,厚十倍乃至三十倍。我们根据下述情形将会理解它们是如何工作的:假定建筑工人开始用水泥堆起一堵宽阔的基墙,然后开始在近地面处的两侧把水泥同等地削去,直到中央部分形成一堵光滑而很薄的墙壁;这些建筑工人常把削去的水泥堆在墙壁的顶上,然后再加入一些新水泥。因此,薄壁就这样不断地高上去,但上面经常有一个厚大的顶盖。一切蜂房,无论刚开始营造的和已经完成的,上面都有这样一个坚固的蜡盖,因此,蜂能够聚集在蜂窠上爬来爬去,而不会把薄的六面壁损坏。米勒教授曾经亲切地为我量过,这些壁在厚度上大有不同;在近蜂窠的边缘处所作的十二次测量表明,平均厚度为1/352英寸;菱形底片较厚些,差不多是三比二,根据二十一次的测量,其平均厚度为1/229英寸。用上述这样特别的营造方法,可以极端经济地使用蜡,同时还能不断地使蜂窠坚固。
  因为许多蜜蜂都聚集一起工作,最初看来,这对于理解蜂房是怎样做成的,会增加困难;一只蜂在一个蜂房里工作一个短时间后,便到另一个蜂房里去,所以,如于贝尔所说的,甚至当第一个蜂房开始营造时就有二十只蜂在工作,我可以用下述情形来实际地阐明这一事实:用朱红色的熔蜡很薄地涂在一个蜂房的六面壁的边上,或者涂在一个扩大着的蜂窠围墙的极端边缘上,必定能够看出蜂把这颜色极细腻地分布开去,——细腻得就像画师用刷子刷的一样——有颜色的蜡从涂抹的地方被一点一点地拿去,放到周围蜂房的扩大着的边缘上去。这种营造的工作在许多蜂之间似乎有一种平均的分配,所有的蜂都彼此本能地站在同一比例的距离内,所有的蜂都试图凿掘相等的球形,于是,建造起或者说留下不咬这些球形之间的交切面。它们有时会遇到困难,说起来这些例子实在是奇异的,例如当两个蜂窠相遇于一角时,蜂是如此常常把已成的蜂房拆掉,并且用不同的方法来重造,而重造出来的蜂窠形状常常和拆去的一样。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 註冊

本版积分规则

Copyright © 2004-2018 Imslr.com
Powered by Discuz! ( 粤ICP备16075051号-2 )
ShenZhenShi ZhiYin Technology Co., Ltd. 聯繫我們
快速回复 返回顶部 返回列表