Aeons隱知_神秘學網站(指引社)

楼主: 阿克
打印 上一主题 下一主题

物种起源

[复制链接]
31
 楼主| 发表于 2008-1-20 14:04:43 | 只看该作者
同样地,华莱斯和特里门(Trimen)先生也曾就马来群岛和非洲的鳞翅类昆虫以及某些<敏感詞>昆虫,描述过若干同等显著的模拟例子。华莱斯先生还曾在乌类中发见过一个这类例子,但是关于较大的四足兽我们还没有例子。模拟的出现就昆虫来说,远比在<敏感詞>动物为多,这大概是由于它们身体小的缘故;昆虫不能保护自己,除了实在有刺的种类,我从来没有听到过一个例子表明这等种类模拟<敏感詞>昆虫,虽然它们是被模拟的,昆虫又不能容易地用飞翔来逃避吃食它们的较大动物:因此,用比喻来说,它们就像大多数弱小动物一样,不得不求助于欺骗和冒充。
  应该注意,模拟过程大概从来没有在颜色大不相同的类型中发生。但是从彼此已经有些类似的物种开始,最密切的类似,如果是有益的,就能够由上述手段得到;如果被模拟的类型以后逐渐通过任何因素而被改变,模拟的类型也会沿着同一路线发生变化,因而可以被改变到任何程度,所以最后它就会取得与它所属的那一科的<敏感詞>成员完全不同的外表或颜色。但是,在这个问题上也有一些难点,因为在某些情形中,我们必须假定,若干不同群的古代成员,在它们还没有分歧到现在的程度以前,偶然地和另上有保护的群的一个成员类似到足够的程度,而得到某些轻微的保护;这就产生了以后获得最完全类似的基础。
  论连结生物的亲缘关系的性质——大属的优势物种的变异了的后代,有承继一些优越性的倾向,这种优越性曾使它们所属的群变得巨大和使它们的父母占有优势,闺此它们几乎肯定地会广为散布,并在自然组成中取得日益增多的地方。每一纲里较大的和较占优势的群因此就有继续增大的倾向;结果它们会把许多较小的和较弱的群排挤掉。这样,我们便能解释一切现代的和绝灭的生物被包括在少数的大目以及更少数的事实。有一个惊人的事实可以阐明,较高级的群在数目上是何等地少,而它们在整个世界的散布又是何等地广泛,澳洲被发现后,从没有增加可立一个新纲的昆虫;并且在植物界方面,据我从胡克博士那里得知,只增加了两三个小科。
  在《论生物在地质上的演替》一章里,我曾根据每一群的性状在长期连续的变异过程中一般分歧很大的原理,企图示明为什么比较古老的生物类型的性状常常在某种程度上介于现存群之间。因为某些少数古老的中间类型把变异很少的后代遗留到今天,这些就组成了我们所谓的中介物种(osculant species)或畸变物种(aberrant specis)。任何类型愈是脱离常规,则已灭绝而完全消失的连结类型的数目就一定愈大。我们有证据表明,畸变的群因绝灭而遭受严重损失,困为它们几乎常常只有极少数的物种;而这类物种照它们实际存在的情况看来一般彼此差异极大,这又意味着绝灭。例如,鸭嘴兽和肺鱼属,如果每一属都不是像现在那样由单独一个物种或两三个物种来代表,而是由十多个物种来代表,大概还不会使它们减少到脱离常规的程度,我想,我们只能根据以下的情形来解释这一事实,即把畸变的群看做是被比较成功的竞争者所征服的类型,它们只有少数成员在异常有利的条件下仍旧存在。
  沃特豪斯先生曾指出,当一个动物群的成员与一个十分不同的群表现有亲缘关系时,这种亲缘关系在大多数情形下是一般的,而不是特殊的;例如,按照沃特豪斯先生的意见,在一切啮齿类中,哔鼠与有袋类的关系最近;但是在它同这个“目”接近的诸点中,它的关系是一般的,也就是说,并不与任何一个有袋类的物种特别接近。因为亲缘关系的诸点被相信是真实的,不只是适应性的,按照我们的观点,它们就必须归因于共同祖先的遗传,所以我们必须假定,或者,一切啮齿类,包括哔鼠在内,从某种古代的有袋类分支出来,而这种古代有袋类在和一切现存的有袋类的关系中,自然具有中间的性状;或者,啮齿类和有袋类两者都从一个共同祖先分支出来,并且两者以后在不同的方向上都发生过大量的变异。不论依据哪种观点,我们都必须假定哔鼠通过遗传比<敏感詞>啮齿类曾经保存下更多的古代祖先性状;所以它不会与任何一个现存的有袋类特别有关系,但是由于部分地保存了它们共同祖先的性状,或者这一群的某种早期成员的性状,而间接地与一切或几乎一切有袋类有关系。另一方面,按照沃特豪斯先生所指出的,在一切有袋类中,袋熊(Phascolomys)不是与啮齿类的任何一个物种,而是与整个的啮齿目最相类似。但是,在这种情形里,很可以猜测这种类似只是同功的,由于袋熊已经适应了像啮齿类那样的习性。老得康多尔在不同科植物中做过几乎相似的观察。
  依据由一个共同祖先传下来的物种在性状上的增多和逐渐分歧的原理,并且依据它们通过遗传保存若干共同性状的事实,我们就能理解何以同一科或更高级的群的成员都由非常复杂的辐射形的亲缘关系彼此连结在一起。因为通过绝灭而分裂成不同群和亚群的整个科的共同祖先,将会把它的某些性状,经过不同方式和不同程度的变化,遗传给一切物种;结果它们将由各种不同长度的迂回的亲缘关系线(正如在经常提起的那个图解中所看到的)彼此关联起来,通过许多祖先而上升。因为,甚至依靠系统树的帮助也不容易示明任何古代贵族家庭的无数亲属之间的血统关系,而且不依靠这种帮助又几乎不可能示明那种关系,所以我们就能理解下述情况:博物学者们在同一个大的自然纲里已经看出许多现存成员和绝灭成员之间有各式各样亲缘关系,但在没有图解的帮助下,要想对这等关系进行描述,是非常困难的。
  绝灭,正如我们在第四章里看到的,在规定和扩大每一纲里的若干群之间的距离有着重要的作用。这样,我们便可依据下述信念来解释整个纲彼此界限分明的原因,例如鸟类与一切<敏感詞>脊椎动物的界限。这信念就是,许多古代生物类型已完全消灭,而这些类型的远祖曾把鸟类的早期祖先与当时较不分化的<敏感詞>脊椎动物连结在一起,可是曾把鱼类和两栖类一度连结起来的生物类型的绝灭就少得多。在某些整个纲里,绝灭得更少,例如甲壳类,因为在这里,最奇异不同的类型仍然可以由一条长的而只是部分断落的亲缘关系的连锁连结在一起。绝灭只能使群的界限分明:它绝不能制造群;因为,如果曾经在这个地球上生活过的每一类型都突然重新出现,虽然不可能给每一群以明显的界限,以示区别,但一个自然的分类,或者至少一个自然的排列,还是可能的,我们参阅图解,就可理解这一点;从A 到L可以代表志留纪时期的十一个属,其中有些已经产生出变异了的后代的大群,它们的每一枝和亚枝的连锁现今依然存在,这些连锁并不比现存变种之间的连锁更大。在这种情形下,就十分不可能下一定义把几个群的若干成员与它们的更加直接的祖先和后代区别开来。可是图解上的排列还是有效的,并且还是自然的;因为根据遗传的原理,比方说,凡是从A传下来的一切类型都有某些共同点。正如在一棵树上我们能够区别出这一枝和那一枝,虽然在实际的分叉上,那两枝是连合的并且融合在一起的。照我说过的,我们不能划清若干群的界限;
  但是我们却能选出代表每一群的大多数性状的模式或类型,不管那群是大的或小的,这样、对于它们之间的差异的价值就提供了一般的概念。如果我们曾经成功地搜集了曾在一切时间和一切空间生活过的任何一个纲的一切类型,这就是我们必须依据的方法。当然,我们永远不能完成这样完全的搜集:虽然如此,在某些纲里我们正在向着这个目标进行;爱德华兹最近在一篇写得很好的论文里强调指出采用模式的高度重要性,不管我们能不能把这些模式所隶属的群彼此分开,并划出界限。
  最后,我们已看到随着生存斗争而来的、并且几乎无可避免地在任何亲种的后代中导致绝灭和性状分歧的自然选择,解释了一切生物的亲缘关系中的那个巨大而普遍的特点,即它们在群之下还有群。我们用血统这个要素把两性的个体和一切年龄的个体分类在一个物种之下,虽然它们可能只有少数的性状是共同的,我们用血统对于已知的变种进行分类,不管它们与它们的亲体有多大的不同;我相信血统这个要素就是博物学者在“自然系统”这个术语下所追求的那个潜在的联系纽带。自然系统,在它被完成的范围以内,其排列是系统的,而且它的差异程度是由属、科、目等来表示的,依据这一概念,我们就能理解我们在分类中不得不遵循的规则。我们能够理解为什么我们把某些类似的价值估计得远在<敏感詞>类似之上;为什么我们要用残迹的、无用的器官,或生理上重要性很小的器官:为什么在寻找一个群与另一个群的关系中我们立刻排弃同功的或适应的性状,可是在同一群的范围内又用这些性状。我们能够清楚地看到一切现存类型和绝灭类型如何能够归入少数几个大纲里;同一纲的若干成员又怎样由最复杂的、放射状的亲缘关系线连结在一起。我们大概永远不会解开任何一个纲的成员之间错综的亲缘关系纲;但是,如果我们在观念中有一个明确的目标,而且不去祈求某种未知的创造计划,我们就可以希望得到确实的虽然是缓慢的进步。
  赫克尔教授(Prof.Hackel)最近在他的“普通形态学”(Generelle Morphologie)和<敏感詞>著作里,运用他的广博知识和才能来讨论他所谓的系统发生(phylogelly),即一切生物的血统线。在描绘几个系统中,他主要依据胚胎的性状,但是也借助于同原器官和残迹器官以及各种生物类型在地层里最初出现的连续时期。这样,他勇敢地走出了伟大的第一步,并向我们表明今后应该如何处理分类。

  形态学

  我们看到同一纲的成员,不论它们的生活习性怎样,在一般体制设计上是彼此相类似的。这种类似性常常用“模式的一致”这个术语来表示;或者说,同一纲的不同物种的若干部分和器官是同原的。这整个问题可以包括在“形态学”这一总称之内。这是博物学中最有趣的部门之一,而且几乎可以说就是它的灵魂。适于抓握的人手、适于掘土的鼹鼠的前肢、马的腿、海豚的鳍状前肢和编幅的翅膀,都是在同一型式下构成的,而且在同一相当的位置上具有相似的骨,有什么能够比这更加奇怪的呢?举一个次要的虽然也是动人的例子:即袋鼠的非常适于在开旷平原上奔跳的后肢,——攀缘而吃叶的澳洲熊(Koala)的同样良好地适于抓握树枝的后肢,——栖息地下、吃昆虫或树根的袋狸(bandicoots)的后肢,——以及某些<敏感詞>澳洲有袋类的后肢——都是在同一特别的模式下构成的,即其第二和第三趾骨极其瘦长,被包在同样的皮内,结果看来好像是具有两个爪的一个单独的趾,尽管有这种形式的类似,显然,这几种动物的后脚在可能想像到的范围内还是用于极其不同的目的的。这个例子由于美洲的负子鼠(opossums)而显得更加动人,它们的生活习性几乎和某些澳洲亲属的相同,但它们的脚的构造却按照普通的设计。以上的叙述是根据弗劳尔教授的,他在结论中说:“我们可以把这叫做模式的符合,但对于这种现象并没有提供多少解释”;他接着说,“难道这不是有力地暗示着真实的关系和从一个共同祖先的遗传吗?
  圣·提雷尔曾极力主张同原部分的相关位置或彼此关联的高度重要性;它们在形状和大小上几乎可以不同到任何程度,可是仍以同一不变的顺序保持联系。比方说,我们从来没有发见过肱骨和前臂骨,或大腿骨和小腿骨颠倒过位置。因此,同一名称可以用于大不相同的动物的同原的骨。我们在昆虫口器的构造中看到这同一伟大的法则:天蛾(sphinx-moth)的极长而螺旋形的喙、蜜蜂或臭虫(bug)①的奇异折合的喙、以及甲虫的巨大的颚,有什么比它们更加彼此不同的呢?——可是用于如此大不相同的目的的一切这等器官,是由一个上唇、大颚和两对小颚经过无尽变异而形成的。这同一法则也支配着甲壳类的口器和肢的构造。植物的花也是这样。
  企图采用功利主义或目的论来解释同一纲的成员的这种型式的相似性,是最没有希望的。欧文在他的《四肢的性质》(Natureof Limbs)这部最有趣的著作中坦白承认这种企图的毫无希望。按照每一种生物独立创造的通常观点,我们只能说它是这样;——就是:“造物主”高兴把每一大纲的一切动物和植物按照一致的设计建造起来;但这并不是科学的解释。
  按照连续轻微变异的选择学说,它的解释在很大程度上就简单了,——每一变异都以某种方式对于变异了的类型有利,但是又经常由于相关作用影响体制的<敏感詞>部分。在这种性质的变化中,将很少或没有改变原始型式或转换各部分位置的倾向。一种肢的骨可以缩短和变扁到任何程度,同时被包以很厚的膜,以当作鳍用;或者一种有蹼的手可以使它的所有的骨或某些骨变长到任何程度,同时连结各骨的膜扩大,以当作翅膀用;可是一切这等变异并没有一种倾向来改变骨的结构或改变器官的相互联系。如果我们设想一切哺乳类、鸟类和爬行类的一种早期祖先——这可以叫做原型——具有按照现存的一般形式构造起来的肢,不管它们用于何种目的,我们将立刻看出全纲动物的肢的同原构造的明晰意义。昆虫的口器也是这样,我们只要设想它们的共同祖先具有一个上唇、大颚和两对小颚,而这些部分可能在形状上都很简单,这样就可以了;于是自然选择便可解释昆虫口器在构造上和机能上的无限多样性。虽然如此,可以想像,由于某些部分的缩小和最后的完全萎缩,由于与<敏感詞>部分的融合,以及由于<敏感詞>部分的重复或增加——我们知道这些变异都是在可能的范围以内的,一种器官的一般形式大概会变得极其隐晦不明,以致终于消失。已经绝灭的巨型海蜥蜴(sea-lizards)的桡足,以及某些吸附性甲壳类的口器,其一般的形式似乎已经因此而部分地隐晦不明了。
  我们的问题另有同等奇异的一个分枝,即系列同原(serialhomologies),就是说,同一个体不同部分或器官相比较,而不是同一纲不同成员的同一部分或器官相比较。大多数生理学家都相信头骨与一定数目的椎骨的基本部分是同原的——这就是说,在数目上和相互关联上是彼此一致的。前肢和后肢在一切高级脊推动物纲里显然是同原的。甲壳类的异常复杂的颚和腿也是这样。几乎每人都熟知,一朵花上的萼片、花瓣、雄蕊和雌蕊的相互位置以及它们的基本构造,依据它们是由呈螺旋形排列的变态叶所组成的观点,是可以得到解释的。由畸形的植物我们常常可以得到一种器官可能转化成另一种器官的直接证据,并且我们在花的早期或胚胎阶段中以及在甲壳类和许多<敏感詞>动物的早期或胚胎阶段中,能够实际看到在成熟时期变得极不相同的器官起初是完全相似的。
  按照神造的通常观点,系列同原是多么不可理解!为什么脑髓包含在一个由数目这样多的、形状这样奇怪的、显然代表脊椎的骨片所组成的箱子里呢?正如欧文所说,分离的骨片便于哺乳类产生幼体,但从此而来的利益决不能解释鸟类和爬行类的头颅的同一构造。为什么创造出相似的骨来形成蝙蝠的翅膀和腿,而它们却用于如此完全不同的目的:即飞和走呢?为什么具有由许多部分组成的极端复杂口器的一种甲壳类,结果总是只有比较少数的腿;或者相反地,具有许多腿的甲壳类都有比较简单的口器呢?为什么每一花朵的尊片、花瓣、雄蕊、雌蕊,虽然适于如此不同的目的,却是在同一型式下构成的呢?
  依据自然选择的学说,我们便能在一定程度上解答这些问题。我们不必在这里讨论某些动物的身体怎样最初分为一系列的部分,或者它们怎样分为具有相应器官的左侧和右侧,因为这样的问题几乎是在我们的研究范围以外的。可是:某些系列构造大概是由于细胞分裂而增殖的结果,细胞分裂引起从这类细胞发育出来的各部分的增殖。为了我们的目的,只须记住以下的事情就够了:即同一部分和同一器官的无限重复,正如欧文指出的,是一切低级的或很少专业化的类型的共同特征;所以脊椎动物的未知祖先大概具有许多椎骨;关节动物的未知祖先具有许多环节;显花植物的未知祖先具有许多排列成一个或多个螺旋形的叶。我们以前还看到,多次重复的部分,不仅在数目上,而且在形状上,极其容易发生变异。结果,这样的部分由于已经具有相当的数量,并且具有高度的变异性,自然会提供材料以适应最不相同的目的;可是它们通过遗传的力量,一般会保存它们原始的或基本的类似性的明显痕迹。这等变异可以通过自然选择对于它们的以后变异提供基础,并且从最初起就有相似的倾向,所以它们更加会保存这种类似性;那些部分在生长的早期是相似的,而且处于几乎相同的条件之下。这样的部分,不管变异多少,除非它们的共同起源完全隐晦不明,大概是系列同原的。
  在软体动物的大纲中,虽然能够阐明不同物种的诸部分是同原的,但可以示明的只有少数的系列同原,如石鳖的亮瓣;这就是说,我们很少能够说出同一个体的某一部分与另一部分是同原的。我们能够理解这个事实,因为在软体动物里,甚至在这一纲的最低级成员里,我们几乎找不到任何一个部分有这样无限的重复,像我们在动物界和植物界的<敏感詞>大纲里所看到的那样。
  但是形态学,正如最近兰克斯特先生在一篇卓越的论文里充分说明的,比起最初所表现的是一个远为复杂的学科。有些事实被博物学者们一概等同地列为同原,对此他划出重要的区别。凡是不同动物的类似构造由于它们的血统都来自一个共同祖先,随后发生变异,他建议把这种构造叫做同原的(homogenouS);凡是不能这样解释的类似构造,他建议把它们叫做同形的(homoplas-tic),比方说,他相信鸟类和哺乳类的心脏整个说起来是同原的,——即都是从一个共同的祖先传下来的,但是在这两个纲里心脏的四个腔是同形的,——即是独立发展起来的。兰克斯特先生还举出同一个体动物身体左右侧各部分的密切类似性,以及连续各部分的密切类似性;在这里,我们有了普通被叫做同原的部分,而它们与来自一个共同祖先的不同物种的血统毫无关系。同形构造与我分类为同功变化或同功类似是一样的,不过我的方法很不完备。它们的形成可以部分地归因于不同生物的各部分或同一生物的不同部分曾经以相似的方式发生变异;并且可以部分地归因于相似的变异为了相同的一般目的或机能而被保存下来,——关于这一点,已经举出过许多事例。
  博物学者经常谈起头颅是由变形的椎骨形成的;螃蟹的颚是由变形的腿形成的;花的雄蕊和雌蕊是由变形的叶形成的;但是正如赫胥黎教授所说的,在大多数情形里,更正确地说,头颅和椎骨、颚和腿等等,并不是一种构造从规存的另一种构造变形而成,而是它们都从某种共同的、比较简单的原始构造变成的。但是,大多数的博物学者只在比喻的意义上应用这种语言;他们决不是意味着在生物由来的悠久过程中,任何种类的原始器官——在一个例子中是椎骨,在另一例子中是腿——曾经实际上转化成头颅或颚。可是这种现象的发生看来是如此可信,以致博物学者几乎不可避免地要使用含有这种清晰意义的语言。按照本书所主张的观点,这种语言确实可以使用,而且以下不可思议的事实就可以部分地得到解释,例如螃蟹的颚,如果确实从真实的虽然极简单的腿变形而成,那么它们所保持的无数性状大概是通过遗传而保存下来的。

  发生和胚胎学

  在整个博物学中这是一个最重要的学科。每一个人都熟悉昆虫变态一般是由少数几个阶段突然地完成的;但是实际上却有无数的、逐渐的、虽然是隐蔽的转化过程。如芦伯克爵士所阐明的,某种蜉蝣类昆虫(Chioeon)在发生过程中要蜕皮二十次以上,每一次蜕皮都要发生一定量的变异;在这个例子里,我们看到变态的动作是以原始的、逐渐的方式来完成的。许多昆虫,特别是某些甲壳类向我们阐明,在发生过程中所完成的构造变化是多么奇异。然而这类变化在某些下等动物的所谓世代交替里达到了最高峰。例如,有一项奇异的事实,即一种精致的分枝的珊瑚形动物,长着水螅体(polypi),并且固着在海底的岩石上,它首先由芽生,然后由横向分裂,产生出漂浮的巨大水母群;于是这些水母产生卵,从卵孵化出浮游的极微小动物,它们附着在岩石上,发育成分枝的珊瑚形动物;这样一直无止境地循环下去。认为世代交替过程和通常的变态过程基本上是同一的信念,已被瓦格纳的发见大大地加强了;他发见一种蚊即瘿蚊(Cecidomyia)的幼虫或蛆由无性生殖产生出<敏感詞>的幼虫,这些<敏感詞>的幼虫最后发育成成熟的雄虫和雌虫,再以通常的方式由卵繁殖它们的种类。
  值得注意的是,当瓦格纳的杰出发见最初宣布的时候,人们问我,对于这种蚊的幼虫获得无性生殖的能力,应当如何解释呢?只要这种情形是唯一的一个,那就提不出任何解答。但是格里姆(Grimm)曾阐明,另一种蚊,即摇蚊(Chironomus),几乎以同样的方式进行生殖,并且他相信这种方法常常见于这一目。退蚊有这种能力的是蛹,而不是幼虫;格里姆进一步阐明,这个例子在某种程度上“把瘿蚊与介壳虫科(Coccidae)的单性生殖联系起来”;——单性生殖这术语意味着介壳虫科的成熟的雌者不必与雄者交配就能产生出能育的卵。现在知道,几个纲的某些动物在异常早的龄期就有通常生殖的能力;我们只要由逐渐的步骤把单性生殖推到愈来愈早的龄期,——摇蚊所表示的正是中间阶段,即蛹的阶段——或者就能解释疫瘿的奇异的情形了。
  已经讲过,同一个体的不同部分在早期胚胎阶段完全相似,在成体状态中才变得大不相同,并且用于大不相同的目的。同样地,也曾阐明,同一纲的最不相同的物种的胚胎一般是密切相似的,但当充分发育以后,却变得大不相似。要证明最后提到的这一事实,没有比冯贝尔的叙述更好的了:他说,“哺乳类、鸟类、蜥蜴类、蛇类,大概也包括龟类在内的胚胎,在它们最早的状态中,整个的以及它们各部分的发育方式,都彼此非常相似;它们是这样的相似,事实上我们只能从它们的大小上来区别这些胚胎。我有两种浸在酒精里的小胚胎,我忘记把它们的名称贴上,现在我就完全说不出它们属于哪一纲了。它们可能是蜥蜴或小鸟,或者是很幼小的哺乳动物,这些动物的头和躯干的形成方式是如此完全相似。可是这些胚胎还没有四肢。但是,甚至在发育的最早阶段如果有四肢存在,我们也不能知道什么,因为蜥蜴和哺乳类的脚、鸟类的翅和脚,与人的手和脚一样,都是从同一基本类型中发生出来的。”大多数甲壳类的幼体,在发育的相应阶段中,彼此密切相似,不管成体可能变得怎样不同;许多的<敏感詞>动物,也是这样。胚胎类似的法则有时直到相当迟的年齿还保持着痕迹:例如,同一属以及近似属的鸟在幼体的羽毛上往往彼此相似;如我们在鸽类的幼体中所看到的斑点羽毛,就是这样。在猫族里,大部分物种在长成时都具有条纹或斑点;狮子和美洲狮(puma)的幼兽也都有清楚易辨的条纹或斑点。我们在植物中也可以偶然的看到同类的事,不过为数不多;例如,金雀花(ulex)的初叶以及假叶金合欢属(Phyllodineous aca-cias)的初叶,都像豆科植物的通常叶子,是羽状或分裂状的。
  同一纲中大不相同的动物的胚胎在构造上彼此相似的各点,往往与它们的生存条件没有直接关系。比方说,在脊椎动物的胚胎中,鳃裂附近的动脉有一特殊的弧状构造,我们不能设想,这种构造与在母体子宫内得到营养的幼小哺乳动物、在巢里孵化出来的鸟卵、在水中的蛙卵所处在的相似生活条件有关系。我们没有理由相信这样的关系,就橡我们没有理由相信人的手、蝙蝠的翅膀、海豚的鳍内相似的骨是与相似的生活条件有关系。没有人会设想幼小狮子的条纹或幼小黑鸫鸟的斑点对于这些动物有任何用处。
  可是,在胚胎生涯中的任何阶段,如果一种动物是活动的,而且必须为自己找寻食物,情形就有所不同了。活动的时期可以发生在生命中的较早期或较晚期;但是不管它发生在什么时期,则幼体对于生活条件的适应,就会与成体动物一样的完善和美妙。这是以怎样重要的方式实行的,最近卢伯克爵士已经很好地说明了,他是依据它们的生活习性论述很不相同的“目”内某些昆虫的幼虫的密切相似性以及同一“目”的<敏感詞>昆虫的幼虫的不相似性来说明的。由于这类的适应,近似动物的幼体的相似性有时就大为不明;特别是在发育的不同阶段中发生分工现象时,尤其如此;例如同一幼体在某一阶段必须找寻食物,在另一阶段必须找寻附着的地方。甚至可以举出这样的例子,即近似物种或物种群的幼体彼此之间的差异要大于成体。可是,在大多数情形下,虽然是活动的幼体,也还或多或少密切地遵循着胚胎相似的一般法则。蔓足类提供了一个这类的良好例子;甚至声名赫赫的居维叶也没有看出藤壶是一种甲壳类:但是只要看一下幼虫,就会毫无错误地知道它是甲壳类。蔓足类的两个主要部分也是这样,即有柄蔓足类和无柄蔓足类虽然在外表上大不相同,可是它们的幼虫在所有阶段中却区别很少。
  胚胎在发育过程中,其体制也一般有所提高;虽然我知道几乎不可能清楚地确定什么是比较高级的体制,什么是比较低级的体制,但是我还要使用这个说法。大概没有人会反对蝴蝶比毛虫更为高级,可是,在某些情形里,成体动物在等级上必须被认为低于幼虫,如某些寄生的甲壳类就是如此。再来谈一谈蔓足类:在第一阶段中的幼虫有三对运动器官、一个简单的单眼和一个吻状嘴,它们用嘴大量捕食,因为它们要大大增加体积。在第二阶段中,相当于蝶类的蛹期,它们有六对构造精致的游泳腿,一对巨大的复眼和极端复杂的触角;但是它们都有一个闭合的不完全的嘴,不能吃东西:它们的这一阶段的职务就是用它们很发达的感觉器官去寻找、用它们活泼游泳的能力去到达一个适宜的地点,以便附着在上面,而进行它们的最后变态,变态完成之后,它们便永远定居不移动了:于是它们的腿转化成把握器官;它们重新得到一个结构很好的嘴;但是触角没有了,它们的两只眼也转化成细小的、单独的、简单的眼点。在这最后完成的状态中,把蔓足类看做比它们的幼虫状态有较高级的体制或较低级的体制均可。但是在某些属里,幼虫可以发育成具有一般构造的雌雄同体,还可以发育成我所谓的补雄体(complemental males);后者的发育确实是退步了,因为这种雄体只是一个能在短期内生活的囊,除了生殖器官以外,它缺少嘴、胃和<敏感詞>重要的器官。
  我们极其惯常地看到胚胎与成体之间在构造上的差异,所以我们容易把这种差异看做是生长上的必然事情,但是,例如,关于蝙蝠的翅膀或海豚的鳍,在它的任何部分可以判别时,为什么它们的所有部分不立刻显示出适当的比例,是没有什么理由可说的。在某些整个动物群中以及<敏感詞>群的某些成员中,情形就是这样的,胚胎不管在哪一时期都与成体没有多大差异:例如欧文曾就乌贼的情形指出,“没有变态;头足类的性状远在胚胎发育完成以前就显示出来了”。陆栖贝类和淡水的甲壳类在生出来的时候就具有固有的形状,而这两个大纲的海栖成员都在它们的发生中要经过相当的而且往往是巨大的变化。还有,蜘蛛几乎没有经过任何变态。大多数昆虫的幼虫都要经过一个蠕虫状的阶段,不管它们是活动的和适应于各种不同习性的也好,或者因处于适宜的养料之中或受到亲体的哺育而不活动的也好;但是在某些少数情形里,例如蚜虫,如果我们注意一下赫胥黎教授关于这种昆虫发育的可称赞的绘图,我们几乎不能看到蠕虫状阶段的任何痕迹。
  有时只是比较早期的发育阶段没有出现。例如,根据米勒所完成的卓越发见,某些虾形的甲壳类(与对虾属[Penoeus]相近似)首先出现的是简单的无节幼体(nauplius-form)①,接着经过两次或多次水蚤期(zoea-stages),再经过糠虾期(mysis一stage),终于获得了它们的成体的构造:在这些甲壳类所属的整个巨大的软甲目(malacostracan)里,现在还不知道有<敏感詞>成员最先经过无节幼体而发育起来,虽然许多是以水蚤出现的;尽管如此,米勒还举出一些理由来支持他的信念,即如果没有发育上的抑制,一切这等甲壳类都会先以无节幼体出现的。
  那么,我们怎样解释胚胎学中的这等事实呢?——即胚胎和成体之间在构造上虽然不是具有普遍的、而只是具有很一般的差异;——同一个体胚胎的最后变得很不相同的并用于不同目的的各种器官在生长早期是相似的;——同一纲里最不相同物种的胚胎或幼体普通是类似的,但不必都如此;——胚胎在卵中或子宫中的时候,往往保存有在生命的那个时期或较后时期对自己并没有什么用处的构造;另一方面,必须为自己的需要而供给食料的幼虫对于周围的条件是完全适应的;——最后,某些幼体在体制的等级上高于它们将要发育成的成体,我相信对于所有这些事实可做如下的解释。
  也许因为畸形在很早期影响胚胎,所以普通便以为轻微的变异或个体的差异也必定在同等的早期内出现。在这方面,我们没有证据,而我们所有的证据确实都在相反一面的;因为大家都知道,牛、马和各种玩赏动物(fancyanimals)的饲育者在动物出生后的一些时间内不能够确定指出它们的幼体将有什么优点或缺点。我们对于自己的孩子也清楚地看到这种情形;我们不能说出一个孩子将来是高的或矮的,或者将一定会有什么样容貌。问题不在于每一变异在生命的什么时期发生,而是在于什么时期可以表现出效果。变异的原因可以在生殖的行为以前作用于,并且我相信往往作用于亲体的一方或双方。值得注意的是,只要很幼小的动物还留存在母体的子宫内或卵内,或者只要它受到亲体的营养和保护,那么它的大部分性状无论是在生活的较早时期或较迟时期获得的,对于它都无关紧要。例如,对于一种借着很钩曲的喙来取食的鸟,只要它由亲体哺育,无论它在幼小时是否具有这种形状的椽,是无关紧要的。
  在第一章中,我曾经叙述过一种变异不论在什么年龄首先出现于亲代,这种变异就有在后代的相应年龄中重新出现的倾向。某些变异只能在相应年龄中出现;例如,蚕蛾在幼虫、茧或蛹的状态时的特点:或者,牛在充分长成角时的特点,就是这样。但是,就我们所知道的,最初出现的变异无论是在生命的早期或晚期,同样有在后代和亲代的相应年龄中重新出现的倾向。我决不是说事情总是这样的,并且我能举出变异(就这字的最广义来说)的若干例外,这些变异发生在子代的时期比发生在亲代的时期较早。
  这两个原理,即轻微变异一般不是在生命的很早时期发生并且不是在很早时期遗传的,我相信,这解释了上述胚胎学上一切主要事实。但是首先让我们在家养变种中看一看少数相似的事实。某些作者曾经写论文讨论过“狗”,他们主张,长躯猎狗和逗牛狗虽然如此不同,可是实际上它们都是密切近似的变种,都是从同一个野生种传下来的;因此我非常想知道它们的幼狗究有多大差异:饲养者告诉我,幼狗之间的差异和亲代之间的差异完全一样,根据眼睛的判断,这似乎是对的;但在实际测计老狗和六日龄的幼狗时,我发见幼狗并没有获得它们比例差异的全量。还有,人们又告诉我拉车马和赛跑马——这几乎是完全在家养状况下由选择形成的品种——的小马之间的差异与充分成长的马一样;但是把赛跑马和重型拉车马的母马和它们的三日龄小马仔细测计之后,我发见情形并非如此。
回复

使用道具 举报

32
 楼主| 发表于 2008-1-20 14:05:18 | 只看该作者
因为我们有确实的证据可以证明,鸽的品种是从单独一野生种传下来的,所以我对孵化后十二小时以内的雏鸽进行了比较;我对野生的亲种、突胸鸽、扇尾鸽、侏儒鸽、排孛鸽、龙鸽、传书鸽、翻飞鸽,仔细地测计了(但这里不拟举出具体的材料)喙的比例、嘴的阔度、鼻孔和眼睑的长度、脚的大小和腿的长度。在这些鸽子中,有一些当成长时在喙的长度和形状以及<敏感詞>性状上以如此异常的方式而彼此不同,以致它们如果见于自然状况下,一定会被列为不同的属。但是把这几个品种的雏鸟排成一列时,虽然它们的大多数刚能够被区别开,可是在上述各要点上的比例差异比起充分成长的鸟却是无比地少了。差异的某些特点——例如嘴的阔度——在雏鸟中几乎不能被觉察出来。但是关于这一法则有一个显著的例外,囵为短面翻飞鸽的雏鸟几乎具有成长状态时完全一样的比例,而与野生岩鸽和<敏感詞>品种的雏鸟有所不同。
  上述两个原理说明了这些事实。饲养者们在狗、马、鸽等近乎成长的时期选择它们并进行繁育:他们并不关心所需要的性质是生活的较早期或较晚期获得的,只要充分成长的动物能够具有它们就可以了。刚才所举的例子,特别是鸽的例子,阐明了由人工选择所累积起来的而且给予他的品种以价值的那些表现特征的差异,一般并不出现在生活的很早期,而且这些性状也不是在相应的很早期遗传的。但是少短面翻飞鸽的例子,即刚生下十二小时就具有它的固有性状,证明这不是普遍的规律;因为在这里,表现特征的差异或者必须出现在比一般更早的时期,或者如果不是这样,这种差异必须不是在相应的龄期遗传的,而是在较早的龄期遗传的。
  现在让我们应用这两个原理来说明自然状况下的物种。让我们讨论一下鸟类的一个群,它们从某一古代类型传下来,并且通过自然选择为着适应不同的习性发生了变异。于是,由于若干物种的许多轻微的、连续的变异并不是在很早的龄期发生的,而且是在相应的龄期得到遗传的,所以幼体将很少发生变异,并且它们之间的相似远比成体之间的相似更加密切,——正如我们在鸽的品种中所看到的那样。我们可以把这观点引伸到大不相同的构造以及整个的纲。例如。前肢,遥远的祖先曾经一度把它当作腿用,可以在悠久的变异过程中,在某一类后代中变得适应于作手用;但是按照上述两个原理,前肢在这几个类型的胚胎中不会有大的变异;虽然在每一个类型里成体的前肢彼此差异很大。不管长久连续的使用或不使用在改变任何物种的肢体或<敏感詞>部分中可以发生什么样的影响,主要是在或者只有在它接近成长而不得不使用它的全部力量来谋生时,才对它发生作用;这样产生的效果将在相应的接近成长的龄期传递给后代,这样,幼体各部分的增强使用或不使用的效果,将不变化,或只有很少的变化。
  对某些动物来说,连续变异可以在生命的很早期发生,或者诸级变异可以在比它们第一次出现时更早的龄期得到遗传。在任何一种这等情形中,如我们在短面翻飞鸽所看到的那样,幼体或胚胎就密切地类似成长的亲类型。在某些整个群中或者只在某些亚群中,如乌贼、陆栖贝类、淡水甲壳类、蜘蛛类以及昆虫这一大纲里的某些成员,这是发育的规律。关于这等群的幼体不经过任何变态的终极原因,我们能够看到这是从以下的事情发生的;即由于幼体必须在幼年解决自己的需要,并且由于它们遵循亲代那样的生活习性;因为在这种情况下,它们必须按照亲代的同样方式发生变异,这对于它们的生存几乎是不可缺少的。还有,许多陆栖的和淡水的动物不发生任何变态,而同群的海栖成员却要经过各种不同的变态,关于这一奇特的事实,米勒曾经指出一种动物适应在陆地上或淡水里生活,而不是在海水里生活,这种缓慢的变化过程将由于不经过任何幼体阶段而大大地简化;因为在这样新的和大为改变的生活习性下,很难找到既适于幼体阶段又适于成体阶段而尚未被<敏感詞>生物所占据或占据得不好的地方。在这种情况下,自然选择将会有利于在愈来愈幼的龄期中逐渐获得的成体构造;于是以前变态的一切痕迹便终于消失了。
  另一方面,如果一种动物的幼体遵循着稍微不同于亲类型的生活习性,因而其构造也稍微不同,是有利的话,或者如果一种与亲代已经不同的幼虫再进一步变化,也是有利的话,那么,按照在相应年龄中的遗传原理,幼体或幼虫可以因自然选择而变得愈来愈与亲体不同,以致到任何可以想像的程度。幼虫中的差异也可以与它的发育的连续阶段相关;所以,第一阶段的幼虫可以与第二阶段的幼虫大不相同,许多动物就有这种情形。成体也可以变得适合于那样的地点和习性一即运动器官或感觉器官等在那里都成为无用的了;在这种情形下,变态就退化了。
  根据上述,由于幼体在构造上的变化与变异了的生活习性是一致的,再加上在相应的年龄中的遗传,我们就能理解动物所经过的发育阶段何以与它们的成体祖先的原始状态完全不同。大多数最优秀的权威者现在都相信,昆虫的各种幼虫期和蛹期就是这样通过适应而获得的,并不是通过某种古代类型的遗传而获得的。芜菁属(Sitaris)——一种经过某些异常发育阶段的甲虫——的奇异情形大概可以说明这种情况是怎样发生的。它的第一期幼虫形态,据法布尔描写,是一种活泼的微小昆虫,具有六条腿、两根长触角和四只眼睛。这些幼虫在蜂巢里孵化;当雄蜂在春天先于雌蜂羽化出室时,幼虫便跳到它们的身上,以后在雌雄交配时又爬到雌蜂身上。当雌蜂把卵产在蜂的蜜室上面时,芜菁属的幼虫就立刻跳到卵上,并且吃掉它们。之后,它们发生一种完全的变化;它们的眼睛消失了,它们的腿和触角变为践迹的了,并且以蜜为生;所以这时候它们才和昆虫的普通幼虫更加密切类似;最后它们进行进一步转化,终于以完美的甲虫出现。现在,如果有一种昆虫,它的转化就像芜菁的转化那样,并且变成为昆虫的整个新纲的祖先,那么,这个新纲的发育过程大概与我们现存昆虫的发育过程大不相同;而第一期幼虫阶段肯定不会代表任何成体类型和古代类型的先前状态。
  另一方面,许多动物的胚胎阶段或幼虫阶段或多或少地向我们完全示明了整个群的祖先的成体状态,这是高度可能的。在甲壳类这个大纲里,彼此极其不同的类型,即吸着性的寄生种类、蔓足类、切甲类(entomostraca)、甚至软甲类,最初都是在无节幼体的形态下作为幼虫而出现的;因为这些幼虫在广阔海洋里生活和觅食,并且不适应任何特殊的生活习性,又据米勒所举出的<敏感詞>理由,大概在某一古远的时期,有一种类似无节幼体的独立的成体动物曾经生存过,以后沿着血统的若干分歧路线,产生了上述巨大的甲壳类的群。还有,根据我们所知道的有关哺乳类鸟类、鱼类和爬行类的胚胎的知识,这些动物大概是某一古代祖先的变异了的后代,那个古代祖先在成体状态中具有极适于水栖生活的鳃、一个鳔、四只鳍状肢和一条长尾。
  因为一切曾经生存过的生物,无论绝灭的和现代的,都能归入少数几个大纲里;因为每一大纲里的一切成员,按照我们的学说,都被微细的级迸连结在一起,如果我们的采集是近乎完全的,那么最好的、唯一可能的分类大概是依据谱系的;所以血统是博物学者们在“自然系统”的术语下所寻求的互相联系的潜在纽带。按照这个观点,我们便能理解,在大多数博物学者的眼里为什么胚胎的构造在分类上甚至比成体的构造更加重要。在动物的两个或更多的群中,不管它们的构造和习性在成体状态中彼此有多大差异,如果它们经过密切相似的胚胎阶段,我们就可以确定它们都是从一个亲类型传下来的,因而彼此是有密切关系的。这样,胚胎构造中的共同性便暴露了血统的共同性;但是胚胎发育中的不相似性并不证明血统的不一致,因为在两个群的一个群中,发育阶段可能曾被抑制,或者可能由于适应新的生活习性而被大大改变,以致不能再被辨认。甚至在成体发生了极端变异的类群中,起源的共同性往往还会由幼虫的构造揭露出来;例如,我们看到蔓足类虽然在外表上极像贝类,可是根据它们的幼虫就立刻可以知道它们是属于甲壳类这一大纲的。困为胚胎往往可以多少清楚地给我们示明一个群的变异较少的、古代祖先的构造,所以我们能够了解为什么古代的、绝灭的类型的成体状态常和同一纲的现存物种的胚胎相类似。阿加西斯相信这是自然界的普遍法则;我们可以期望此后看到这条法则被证明是真实的。可是,只有在以下的情形下它才能被证明是真实的,即这个群的古代祖先并没有由于在生长的很早期发生连续的变异,也没有由于这等变异在早于它们第一次出现时的较早龄期被遗传而全部湮没。还必须记住,这条法则可能是正确的,但是由于地质纪录在时间上扩展得还不够久远,这条法则可能长期地或永远地得不到实证。如果一种古代类型在幼虫状态中适应了某种特殊的生活方式,而且把同一幼虫状态传递给整个群的后代,那么在这种情形下,那条法则也不能严格地有效;因为这等幼虫不会和任何更加古老类型的成体状态相类似。
  这样,依我看来,胚胎学上的这些无比重要的事实,按照以下的原理就可以得到解释,那原理是:某一古代祖先的许多后代中的变异,曾出现在生命的不很早的时期,并且曾经遗传在相应的时期。如果我们把胚胎看做一幅图画,虽然多少有些模糊,却反映了同一大纲的一切成员的祖先,或是它的成体状态,或是它的幼体状态,那么胚胎学的重要性就会大大地提高了。

  残迹的、萎缩的和不发育的器官

  处于这种奇异状态中的器官或部分,带着废弃不用的鲜明印记,在整个自然界中极为常见,甚至可以说是普遍的。不可能举出一种高级动物,它的某一部分不是残迹状态的。例如哺乳类的雄体具有退化的奶头;蛇类的肺有一叶是残迹的;鸟类“小翼羽”(bastard-wing)可以稳妥地被认为是退化,某些物种的整个翅膀的残迹状态是如此显著,以致它不能用于飞翔。鲸鱼胎几有牙齿,而当它们成长后都没有一个牙齿;或者,未出生的小牛的上颚生有牙齿,可是从来不穿出牙龈,有什么比这更加奇怪的呢?
  残迹器官清楚地以各种方式示明它们的起源和意义。密切近似物种的、甚至同一物种的甲虫,或者具有十分大的和完全的翅,或者只具有残迹的膜,位于牢固合在一起的翅鞘之下;在这等情形里,不可能怀疑那种残迹物就是代表翅的。残迹器官有时还保持着它们的潜在能力:这偶然见于雄性哺乳类的奶头,人们曾看到它们发育得很好而且分泌乳汁。黄牛属(Bos)的乳房也是如此,它们正常有四个发达的奶头和两个残迹的奶头;但是后者在我们家养的奶牛里有时很发达,而且分泌乳汁。关于植物,在同一物种的个体中,花瓣有时是残迹的,有时是发达的。在雌雄异花的某些植物里,科尔路特发见,使雄花具有残迹雌蕊的物种与自然具有很发达雌蕊的雌雄同花的物种进行杂交,在杂种后代中那残迹雌蕊就大大地增大了;这清楚地示明残迹雌蕊和完全雌蕊在性质上是基本相似的。一种动物的各个部分可能是在完全状态中的,而它们在某一意义上则可能是残迹的,因为它们是没有用的:例如普通蝾螈(Salamander)即水蝾螈的蝌蚪,如刘易斯先生所说的,“有鳃,生活在水里;但是山蝾螈(Salamandra atra)则生活在高山上,都产出发育完全的幼体。这种动物从来不在水中生活。可是如果我们剖开怀胎的雌体,我们就会发现在她体内的蝌蚪具有精致的羽状鳃;如果把它们放在水里,它们能像水蝾螈的蝌蚪那样地游泳。显然地,这种水生的体制与这动物的未来生活没有关系,并且也不是对于胚胎条件的适应;它完全与祖先的适应有关系,不过重演了它们祖先发育中的一个阶段而已。”
  兼有两种用处的器官,对于一种用处,甚至比较重要的那种用处,可能变为残迹或完全不发育,而对于另一种用处却完全有效。例如,在植物中,雌蕊的功用在于使花粉管达到于房里的胚珠。雌蕊具有一个柱头,为花柱所支持;但是在某些聚合花科的植物中,当然不能受精的雄性小花具有一个残迹的雌蕊,因为它的顶部没有柱头;但是,它的花柱依然很发达,并且以通常的方式被有细毛,用来把周围的、邻接的花药里的花粉刷下。还有,一种器官对于固有的用处可能变为残迹的,而被用于不同的目的:在某些鱼类里,嫖对于漂浮的固有机能似乎变为残迹的了,但是它转变成原始的呼吸器官或肺。还能举出许多相似的事例。
  有用的器官,不管它们如何不发达,也不应认为是残迹的,除非我们有理由设想它们以前曾更高度地发达过,它们可能是在一种初生的状态中,正向进一步发达的方向前进。另一方面,残迹器官或者十分没有用处,例如从来没有穿过牙龈的牙齿,或者是几乎没有用处,例如只能当作风篷用的驼鸟翅膀。因为这种状态的器官在从前更少发育的时候,甚至比现在的用处更少,所以它们以前不可能是通过变异和自然选择而产生出来的,自然选择的作用只在于保存有用的变异。它们是通过遗传的力量部分地被保存下来的,与事物的以前状态有关系。虽然如此,要区别残迹器官和初生器官往往是有困难的;因为我们只能用类推的方法去判断一种器官是否能够进一步地发达,只有它们在能够进一步地发达的情形下,才应该叫做初生的。这种状态的器官总是很稀少的;因为具有这样器官的生物普通会被具有更为完美的同一器官的后继者所排挤,因而它们早就绝灭了。企鹅的翅膀有高度的用处,它可以当作鳍用;所以它可能代表翅膀的初生状态:这并不是说我相信这是事实;它更可能是一种缩小了的器官,为了适应新的机能而发生了变异,另一方面,几维鸟的翅膀是十分无用的,并且确实是残迹的。欧文认为肺鱼的简单的丝状肢是“在高级脊椎动物里,达到充分机能发育的器官的开端”;但是按照京特博士最近提出的观点,它们大概是由继续存在的鳍轴构成的,这鳍轴具有不发达的鳍条或侧枝。鸭嘴兽的乳腺若与黄牛的乳房相比较,可以看做是初生状态的。某些蔓足类的卵带已不能作为卵的附着物,很不发达,这些就是初生状态的鳃。
  同一物种的诸个体中,残迹器官在发育程度上以及<敏感詞>方面很容易发生变异。在密切近似的物种中,同一器官缩小的程度有时也有很大差异。同一科的雌蛾的翅膀状态很好地例证了这后一事实。残迹器官可能完全萎缩掉;这意味着在某些动物或植物中,有些器官已完全不存在,虽然我们依据类推原希望可以找到它们,而且在畸形个体中的确可以偶然见到它们。例如玄参科(Scrophulariaceae)的大多数植物,其第五条雄蕊已完全萎缩;可是我们可以断定第五条雄蕊曾经存在过,因为可以在这一科的许多物种中找到它的残迹物,并且这一残迹物有时会完全发育,就像有时我们在普通的金鱼草(snap-dragon)里所看到的那样。当在同一纲的不同成员中追寻任何器官的同原作用时,没有比发现残迹物更为常见的了,或者为了充分理解诸器官的关系,没有比残迹物的发现更为有用的了。欧文所绘的马、黄牛和犀牛的腿骨图很好地示明了这一点。
  这是一个重要的事实,即残迹器官,如鲸鱼和反刍类上颚的牙齿,往往见于胚胎,但已后又完全消失了。我相信,这也是一条普遍的法则,即残迹器官,如用相邻器官来比较,则在胚胎里比在成体里要大一些;所以这种器官早期的残迹状态是较不显著的,甚至在任何程度上都不能说是残迹的,因此,成体的残迹器官往往被说成还保留胚胎的状态。
  刚才我已举出了有关残迹器官的一些主要事实。当仔细考虑到它们时,无论何人都会感到惊奇;因为它告诉我们大多数部分和器官巧妙地适应于某种用处的同一推理能力,也同等明晰地告诉我们这些残迹的或萎缩的器官是不完全的,无用的。在博物学著作中,一般把残迹器官说成是“为了对称的缘故”或者是为了要“完成自然的设计”而被创造出来的。但这并不是一种解释,而只是事实的复述。这本身就有矛盾:例如王蛇(boa-constrictor)有后肢和骨盘的残迹物,如果说这些骨的保存是为了“完成自然的设计”,那末正如魏斯曼教授所发问的,为什么<敏感詞>的蛇不保存这些骨,它们甚至连这些骨的残迹都没有呢?如果认为卫星“为了对称的缘故”循着椭圆形轨道绕着行星运行,因为行星是这样绕着太阳运行的,那末对于具有这样主张的天文学者,将作何感想呢?有一位著名的生理学者假定残迹器官是用来排除过剩的或对于系统有害的物质的,他用这个假定来解释残迹器官的存在;但是我们能假定那微小的乳头(papilla)一一它往往代表雄花中的雌蕊并且只由细胞组织组成——能够发生这样作用吗?我们能假定以后要消失的、残迹的牙齿把像磷酸钙这样贵重的物质移去可以对于迅速生长的牛胚胎有利益吗?当人的指头被截断时,我们知道在断指上会出现不完全的指甲,如果我相信这些指甲的残跡是为了排除角状物质而发育的,那么就得相信海牛的鳍上的残迹指甲也是为了同样的目的而发育的。
  按照伴随着变异的生物由来的观点,残迹器官的起源是比较简单的;并且我们能够在很大程度上理解控制它们不完全发育的法则。在我们的家养生物中,我们有许多残迹器官的例子,——如无尾绵羊品种的尾的残基,——无耳绵羊品种的耳的残迹,——无角牛的品种,据尤亚特说,特别是小牛的下垂的小角的重新出现,——以及花椰菜(cauliflower)的完全花的状态。我们在畸形生物中常常看到各种部分的残迹;但是我怀疑任何这种例子除了示明残迹器官能够产生出来以外,是否能够说明自然状况下的残迹器官的起源;因为衡量证据,可以清楚地示明自然状况下的物种并不发生巨大的、突然的变化。但是我们从我们家养生物的研究中得知,器官的不使用导致了它们的缩小;而且这种结果是遗传的。
  不使用大概是器官退化的主要因素。它起初以缓慢的步骤使器官愈来愈完全地缩小,一直到最后成为残迹的器官,-----像栖息在暗洞里的动物眼睛,以及栖息在海洋岛上的鸟类翅膀,就是这样。还有,一种器官在某种条件下是有用的,在<敏感詞>条件下可能是有害的,例如栖息在开阔小岛上的甲虫的翅膀就是这样;在这种情形下,自然选择将会帮助那种器官缩小,直到它成为无害的和残迹的器官。
  在构造上和机能上任何能够由细小阶段完成的变化都在自然选择的势力范围之内;所以一种器官由于生活习性的变化而对于某种目的成为无用或有害时,大概可以被改变而用于另一目的。一种器官大概还可以只保存它的以前的机能之一。原来通过自然选择的帮助而被形成的器官,当变成无用时,可以发生很多变异,因为它们的变异已不再受自然选择的抑制了。所有这些都与我们在自然状况下看到的很相符合。还有,不管在生活的哪一个时期,不使用或选择可以使一种器官缩小,这一般都发生在生物到达成熟期而势必发挥它的全部活动力量的时候,而在相应年龄中发生作用的遗传原理就有一种倾向,使缩小状态的器官在同一成熟年龄中重新出现,但是这一原理对于胚胎状态的器官却很少发生影响。这样我们就能理解,在胚胎期内的残迹器官如与邻接器官相比,前者比较大,而在成体状态中前者就比较小。例如,如果一种成长动物的指在许多世代中由于习性的某种变化而使用得愈来愈少,或者如果一种器官或腺体在机能上使用得愈来愈少,那么我们便可以推论,它在这种动物的成体后代中就要缩小,但是在胚胎中却几乎仍保持它原来的发育标准。
  可是还存在着以下的难点。在一种器官已经停止使用因而大大缩小以后,它怎么能够进一步地缩小,一直到只剩下一点残迹呢?最后它怎么能够完全消失呢、那器官一旦在机能上变成为无用的以后,“不使用”几乎不可能继续产生任何进一步的影响。某种补充的解释在这里是必要的,但我不能提出。比方说,如果能够证明体制的每一部分有这样一种倾向:它向着缩小方面比向着增大方面可以发生更大程度的变异,那么我们就能理解已经变成为无用的一种器官为什么还受不使用的影响而成为残迹的,以至最后完全消失;因为向着缩小方面发生的变异不再受自然选择的抑制。在以前一章里解释过的生长的经济的原理,对于一种无用器官变成为残迹的,或者有作用;根据这一原理,形成任何器官的物质,如果对于所有者没有用处,就要尽可能地被节省。但是这一原理几乎一定只能应用于缩小过程的较早阶段;因为我们无法设想,比方说在雄花中代表雌花雌蕊的并且只由细胞组织形成的一种微小突起,为了节省养料的缘故,能够进一步地缩小或吸收。
  最后,不管残迹器官由什么步骤退化到它们现在那样的无用状态,因为它们都是事物先前状态的记录并且完全由遗传的力量被保存下来,——根据分类的系统观点,我们就能理解分类学者在把生物放在自然系统中的适宜地位时,怎么会常常发见残迹器官与生理上高度重要的器官同等地有用。残迹器官可以与一个字中的字母相比,它在发音上已无用,而在拼音上仍旧保存着,但这些字母还可以用作那个字的起源的线索。根据伴随着变异的生物由来的观点,我们可以断言,残迹的、不完全的、无用的或者十分萎缩的器官的存在,对于旧的生物特创说来说,必定是一个难点,但按照本书说明的观点来说,这不仅不是一个特殊的难点甚至是可以预料到的。

  提要

  在这一章里我曾企图示明:在一切时期里,一切生物在群之下还分成群的这样排列,——一切现存生物和绝灭生物被复杂的、放射状的、曲折的亲缘线连结起来而成为少数大纲的这种关系的性质,——博物学者在分类中所遵循的法则和遇到的困难,——那些性状,不管它们具有高度重要性或最少重要性,或像残迹器官那样毫无重要性,如果是稳定的、普遍的,对于它们所给予的评价,一同功的即适应的性状和具有真实亲缘关系的性状之间在价值上的广泛对立;以及<敏感詞>这类法则;——如果我们承认近似类型有共同的祖先,并且它们通过变异和自然选择而发生变化因而引起绝灭以及性状的分歧,那么,上述一切就是自然的了。在考虑这种分类观点时,应该记住血统这个因素曾被普遍地用来把同一物种的性别、龄期、二型类型以及公认变种分类在一起,不管它们在构造上彼此有多大不同。如果把血统这因素——这是生物相似的一个确知原因,——扩大使用,我们将会理解什么叫做“自然系统”:它是力图按谱系进行排列,用变种、物种、属、科、目和纲等术语来表示所获得的差异诸级。
  根据同样的伴随着变异的生物由来学说,“形态学”中的大多数大事就成为可以理解的了,——无论我们去观察同一纲的不同物种在不管有什么用处的同原器官中所表现的同一形式;或者去观察同一个体动物和个体植物中的系列同源和左右同源,都可以得到理解。
  根据连续的、微小的变异不一定在或一般不在生活的很早时期发生并且遗传在相应时期的原理,我们就能理解“胚胎学”中的主要事实;即当成熟时在构造上和机能上变得大不相同的同原器官在个体胚胎中是密切类似的;在近似的而显明不同的物种中那些虽然在成体状态中适合于尽可能不同的习性的同原部分或器官是类似的。幼虫是活动的胚胎,它们随着生活习性的变化而多少发生了特殊的变异,并且把它们的变异在相应的很早龄期遗传下去。根据这些同样的原理——并且记住,器官由于不使用或由于自然选择的缩小,一般发生在生物必须解决自己需要的生活时期,同时还要记住,遗传的力量是多么强大,——那么,残迹器官的发生甚至是可以预料的了。根据自然的分类必须按照谱系的观点,就可理解胚胎的性状和残迹器官在分类中的重要性。
  最后,这一章中已经讨论过的若干类事实,依我看来,是这样清楚地示明了,栖息在这个世界上的无数的物种、属和科,在它们各自的纲或群的范围之内,都是从共同祖先传下来的,并且都在生物由来的进程中发生了变异,这样,即使没有<敏感詞>事实或论证的支持,我也会毫不踌躇地采取这个观点。
回复

使用道具 举报

33
 楼主| 发表于 2008-1-20 14:06:20 | 只看该作者
第十五章 复述和结论
对自然选择学说的异议的复述——支持自然选择学说的一般的和特殊的情况的复述——一般相信物种不变的原因——自然选择学说可以引伸到什么程度——自然选择学说的采用对于博物学研究的影响——结束语。
  因为全书是一篇绵长的争论,所以把主要的事实和推论简略地复述一遍,可能给予读者一些方便。
  我不否认,有许多严重的异议可以提出来反对伴随着变异的生物由来学说,这一学说是以变异和自然选择为依据的。我曾努力使这些异议充分发挥它们的力量,比较复杂的器官和本能的完善化并不依靠超越于、甚至类似于人类理性的方法,而是依靠对于个体有利的无数轻微变异的累积,最初看来,没有什么比这更难使人相信的了。尽管如此,虽然在我们的想像中这好像是一个不可克服的大难点,可是如果我们承认下述的命题,这就不是一个真实的难点,这些命题是:体制的一切部分和本能至少呈现个体差异——生存斗争导致构造上或本能上有利偏差的保存——最后,在每一器官的完善化的状态中有诸级存在,每一级对于它的种类都是有利的。这些命题的正确性,我想,是无可争辩的。
  毫无疑问,甚至猜想一下许多器官是通过什么样的中间级进而成善化了的,也有极端困难,特别对于已经大量绝灭了的、不连续的、衰败的生物群来说,更加如此;但是我们看到自然界里有那么多奇异的级进,所以当我们说任何器官或本能,或者整个构造不能通过许多级进的步骤而达到现在的状态时,应该极端的谨慎。必须承认,有特别困难的事例来反对自然选择学说,其中最奇妙的一个就是同一蚁群中有两三种工蚁即不育雌蚁的明确等级;但是,我已经试图阐明这些难点是怎样得到克服的。
  物种在第一次杂交中的几乎普遍的不育性,与变种在杂交中的几乎普遍的能育性,形成极其明显的对比,关于这一点我必须请读者参阅第九章末所提出的事实的复述,这些事实,依我看来,决定性地示明了这种不育性不是特殊的秉赋,有如两个不同物种的树木不能嫁接在一起决不是特殊的秉赋一样;而只是基于杂交物种的生殖系统的差异所发生的偶然事情。我们在使同样两个物种进行互交——即一个物种先用作父本,后用作母本——的结果中所得到的大量差异里,看到上述结论的正确性。从二型和三型的植物的研究加以类推,也可以清楚地导致相同的结论,因为当诸类型非法地结合时,它们便产生少数种籽或不产生种籽,它们的后代也多少是不育的;而这些类型无疑是同一物种,彼此只在生殖器官和生殖机能上有所差异而已。
  变种杂交的能育性及其混种后代的能育性虽然被如此众多的作者们确认是普遍的,但是自从高度权威该特纳和科尔路特举出若干事实以后,这就不能被认为是十分正确的了。被试验过的变种大多数是在家养状况下产生的;而且因为家养状况(我不是单指圈养而言)几乎一定有消除不育性的倾向,根据类推,这种不育性在亲种的杂交中会有影响;所以我们就不应该希望家养状况同样会在它们的变异了的后代杂交中诱起不育性。不育性的这种消除显然有从容许我们的家畜在各种不同环境中自由生育的同一原因而来的;而这又显然是从它们已经逐渐适应于生活条件的经常变化而来的。
  有两类平行的事实似乎对于物种第一次杂交的不育性及其杂种后代的不育性提出许多说明。一方面,有很好的理由可以相信,生活条件的轻微变化会给予一切生物以活力和能育性。我们又知道同一变种的不同个体的杂交以及不同变种的杂交会增加它们后代的数目,并且一定会增加它们的大小和活力。这主要由于进行杂交的类型曾经暴露在多少不同的生活条件下;因为我曾经根据一系列辛劳的实验确定了,如果同一变种的一切个体在若干世代中都处于相同的条件下,那么从杂交而来的好处常常会大事减少或完全消失。这是事实的一面。另一方面,我们知道曾经长期暴露在近乎一致条件下的物种,当在大不相同的新条件之下圈养时,它们或者死亡,或者活着,即使保持完全的健康,也要变成不育的了。对长期暴露在变化不定的条件下的家养生物来说,这种情形并不发生,或者只以轻微的程度发生。因此,当我们看到两个不同物种杂交,由于受孕后不久或在很早的年龄死亡,而所产生的杂种数目稀少时,或者虽然活着而它们多少变得不育时,这种结果极可能是因为这些杂种似乎把两种不同的体制融合在一起,事实上已经遭受到生活条件中的巨大变化。谁能够以明确的方式来解释,比方说,象或狐狸在它的故乡受到圈养时为什么不生育,而家猪或猪在最不相同的条件下为什么还能大量地生育,于是他就能够对以下问题作出确切的答案,即两个不同的物种当杂交时以及它们的杂种后代为什么一般都是多少不育的,而两个家养的变种当杂交时以及它们的混种后代为什么都是完全能育的。
  就地理的分布而言,伴随着变异的生物由来学说所遭遇的难点是极其严重的。同一物种的一切个体、同一属或甚至更高级的群的一切物种都是从共同的祖先传下来的;因此,它们现在不管在地球上怎样遥远的和隔离的地点被发现,它们一定是在连续世代的过程中从某一地点迁徙到一切<敏感詞>地点的。这是怎样发生的,甚至往往连猜测也完全不可能。然而,我们既然有理由相信,某些物种曾经在极长的时间保持同一物种的类型(这时期如以年代来计算是极其长久的),所以不应过分强调同一物种的偶然的广泛散布;为什么这样说呢,因为在很长久的时期里总有良好的机会通过许多方法来进行广泛迁徙的。不连续或中断的分布常常可以由物种在中间地带的绝灭来解释。不能否认,我们对于在现代时期内曾经影响地球的各种气候变化和地理变化的全部范围还是很无知的;而这些变化则往往有利于迁徙。作为一个例证,我曾经企图示明冰期对于同一物种和近似物种在地球上的分布的影响曾是如何的有效。我们对于许多偶然的输送方法还是深刻无知的。至于生活在遥远而隔离的地区的同属的不同物种,因为变异的过程必然是缓慢地进行的,所以迁徒的一切方法在很长的时期里便成为可能;结果同属的物种的广泛散布的难点就在某种程度上减小了。
  按照自然选择学说,一定有无数的中间类型曾经存在过,这些中间类型以微细的级进把每一群中的一切物种联结在一起,这些微细的级进就像现存变种那样,因此我们可以问:为什么我们没有在我们的周围看到这些联结的类型呢?为什么一切生物并没有混杂成不能分解的混乱状态呢?关于现存的类型,我们应该记住我们没有权利去希望(除了稀少的例子以外)在它们之间发现直接联结的连锁,我们只能在各个现存类型和某一绝灭的、被排挤掉的类型之间发现这种连锁。如果一个广阔的地区在一个长久时期内曾经保持了连续的状态,并且它的气候和<敏感詞>生活条件从被某一个物种所占有的区域逐渐不知不觉地变化到为一个密切近似物种所占有的区域,即使在这样的地区内,我们也没有正当的权利去希望在中间地带常常找到中间变种。因为我们有理由相信,每一属中只有少数物种曾经发生变化;<敏感詞>物种则完全绝灭,而没有留下变异了的后代。在的确发生变化的物种中,只有少数在同一地区内同时发生变化;而且一切变异都是逐渐完成的。我还阐明,起初在中间地带存在的中间变种大概会容易地被任何方面的近似类型所排挤;因为后者由于生存的数目较大,比起生存数目较少的中间变种一般能以较快的速率发生变化和改进;结果中间变种最后就要被排挤掉和消灭掉。
  世界上现存生物和绝灭生物之间以及各个连续时期内绝灭物种和更加古老物种之间,都有无数连结的连锁已经绝灭。按照这一学说来看,为什么在每一地质层中没有填满这等连锁类型呢?为什么化石遗物的每一次采集没有为生物类型的逐级过渡和变化提供明显的证据呢?虽然地质学说的研究毫无疑问地揭露了以前曾经存在的许多连锁,把无数的生物类型更加紧密地连结在一起,但是它所提供的过去物种和现存物种之间的无限多的微细级进并不能满足这一学说的要求;这是反对这一学说的许多异议中的最明显的异议。还有,为什么整群的近似物种好像是突然出现在连续的地质诸阶段之中呢?(虽然这常常是一种假象。)虽然我们现在知道,生物早在寒武纪最下层沉积以前的一个无可计算的极古时期就在这个地球上出现了,但是为什么我们在这个系统之下没有发见巨大的地层含有寒武纪化石的祖先遗骸呢?因为,按照这个学说,这样的地层一定在世界历史上的这等古老的和完全未知的时代里,已经沉积于某处了。
  我只能根据地质纪录比大多数地质学家所相信的更加不完全这一假设来回答上述的问题和异议。一切博物馆内的标本数目与肯定曾经生存过的无数物种的无数世代比较起来,是绝不足道的。任何两个或更多物种的亲类型不会在它的一切性状上都直接地介于它的变异了的后代之间,正如岩鸽在嗉囊和尾方面不直接介于它的后代突胸鸽和扇尾鸽之间一样。如果我们研究两种生物,即使是这研究是周密进行的,除非我们得到大多数的中间连锁,我们就不能辨识一个物种是否是另一变异了的物种的祖先;而且由于地质纪录的不完全,我们也没有正当的权利去希望找到这么许多连锁。如果有两三个或者甚至更多的连结的类型被发现,它们就会被许多博物学者简单地列为那样多的新物种,如果它们是在不同地质亚层中找到的,不管它们的差异如何轻微,就尤其如此。可以举出无数现存的可疑类型,大概都是变种;但是谁敢说将来会发现如此众多的化石连锁,以致博物学者能够决定这些可疑的类型是否应该叫做变种?只有世界的一小部分曾经作过地质勘探。只有某些纲的生物才能在化石状态中至少以任何大量的数目被保存下来。许多物种一旦形成以后如果永不再进行任何变化,就会绝灭而不留下变异了的后代;而且物种进行变化的时期,虽然以年来计算是长久的,但与物种保持同一类型的时期比较起来,大概还是短的。占优势的和分布广的物种,最常变异,并且变异最多,变种起初又常是地方性的——由于这两个原因,要在任何一个地层里发现中间连锁就比较不容易。地方变种不等到经过相当的变异和改进之后,是不会分布到<敏感詞>遥远地区的;当它们散布开了,并且在一个地层中被发现的时候,它们看来好像是在那里被突然创造出来似的,于是就被简单地列为新的物种。大多数地层在沉积中是断断续续的;它们延续的时间大概比物种类型的平均延续时间较短。在大多数情形下,连续的地质层都被长久的空白间隔时间所分开;因为含有化石的地质层,其厚度足以抵抗未来的陵蚀作用,按照一般规律,这样的地质层只能在海底下降而有大量沉积物沉积的地方,才能得到堆积。在水平面上升和静止的交替时期,一般是没有地质纪录的。在后面这样的时期中,生物类型大概会有更多的变异性;在下降的时期中,大概有更多的绝灭。
  关于寒武纪地质层以下缺乏富含化石的地层一点,我只能回到第十章所提出的假说;即,我们的大陆和海洋在长久时期内虽然保持了几乎像现在那样的相对位置,但是我们没有理由去假设永远都是这样的;所以比现在已知的任何地质层更古老得多的地质层可能还埋藏在大洋之下。有人说自从我们这个行星凝固以来所经历的时间,并不足以使生物完成所设想的变化量,这一异议,正如汤普森爵士所极力主张的,大概是曾经提出来的最严重异议之一,关于这一点我只能说:第一,如用年来计算,我们不知道物种以何种速率发生变化,第二,许多哲学家还不愿意承认,我们对于宇宙的和地球内部的构成已有足够的知识,可以用来稳妥地推测地球过去的时间长度。
  大家都承认地质纪录是不完全的;但是很少人肯承认它的不完全已到了我们学说所需要的那种程度。如果我们观察到足够悠久的长期的间隔时间,地质学说就明白地表明一切物种都变化了;而且它们以学说所要求的那种方式发生变化,因为它们都是缓慢地而且以逐渐的方式发生变化的。我们在连续地质层里的化石遗骸中清楚地看到这种情形,这等地质层中化石遗骸的彼此关系一定远比相隔很远的地质层中的化石遗骸更加密切。
  以上就是可以正当提出来反对这个学说的几种主要异议和难点的概要;我现在已经就我所知道的简要地复述了我的回答和解释。多年以来我曾感到这些难点是如此严重,以致不能怀疑它们的分量。但是值得特别注意的是,更加重要的异议与我们公认无知的那些问题有关;而且我们还不知道我们无知到什么程度。我们还不知道在最简单的和最完善的器官之间的一切可能的过渡级进;也不能假装我们已经知道,在悠久岁月里“分布”的各种各样的方法,或者地质纪录是怎样的不完全。尽管这几种异议是严重的,但在我的判断中它们决不足以推翻伴随着后代变异的生物由来学说。
  现在让我们谈谈争论的另一方面,在家养状况下,我们看到由变化了的生活条件所引起的或者至少是所激起的大量变异性;但是它经常以这样暧昧的方式发生,以致我们容易把变异认为是自发的,变异性受许多复杂的法则所支配——受相关生长、补偿作用、器官的增强使用和不使用、以及周围条件的一定作用所支配,确定我们的家养生物曾经发生过多少变化,困难很大;但是我们可以稳妥地推论,变异量是大的,而且变异能够长久地遗传下去。只要生活条件保持不变,我们就有理由相信,曾经遗传过许多世代的变异可以继续遗传到几乎无限的世代。另一方面,我们有证据说,一旦发生作用的变异性在家养状况下便可在很久的时期内不会停止;我们还不知道它何时停止过,因为就是最古老的家养生物也会偶尔产生新变种。
  变异性实际上不是由人引起的;他只是无意识地把生物放在新的生活条件之下,于是自然就对生物的体制发生作用,而引起它发生变异。但是人能够选择并且确实选择了自然给予他的变异,从而把变异按照任何需要的方式累积起来。这样,他便可以使动物和植物适应他自己的利益或爱好。他可以有计划地这样做,或者可以无意识地这样做,这种无意识选择的方法就是保存对他最有用或最合乎他的爱好的那些个体,但没有改变品种的任何企图。他肯定能够借着在每一连续世代中选择那些除了有训练的眼睛就不能辨识出来的极其微细的个体差异,来大大影响一个品种的性状,这种无意识的选择过程在形成最显著的和最有用的家养品种中曾经起过重大的作用。人所产生的许多品种在很大程度上具有自然物种的状况,这一事实已由许多品种在很大程度上具有自然物种的状况,这一事实已由许多品种究是变种或本来是不同的物种这一难以解决的疑难问题所示明了。
  没有理由可以说在家养状况下曾经如此有效地发生了作用的原理为什么不能在自然状况下发生作用,在不断反复发生的生存斗争中有利的个体或族得到生存,从这一点我们看到一种强有力的和经常发生作用的“选择”的形式。一切生物都依照几何级数高度地增加,这必然会引起生存斗争。这种高度的增加率可用计算来证明——许多动物和植物在连续的特殊季节中以及在新地区归化时都会迅速增加,这一点就可证明高度的增加率。产生出来的个体比可能生存的多。天平上的些微之差便可决定哪些个体将生存,哪些个体将死亡——哪些变种或物种将增加数量,哪些将减少数量或最后绝灭。同一物种的个体彼此在各方面进行了最密切的竞争,因此它们之间的斗争一般最为剧烈;同一物种的变种之间的斗争几乎也是同样剧烈的,其次就是同属的物种之间的斗争。另一方面,在自然系统上相距很远的生物之间的斗争也常常是剧烈的。某些个体在任何年龄或任何季节比与其相竞争的个体只要占有最轻微的优势,或者对周围物理条件具有任何轻微程度的较好适应,结果就会改变平衡。
  对于雌雄异体的动物,在大多数情形下雄者之间为了占有雌者,就会发生斗争。最强有力的雄者,或与生活条件斗争最成功的雄者,一般会留下最多的后代。但是成功往往取决于雄者具有特别武器,或者防御手段,或者魅方;轻微的优势就会导致胜利。
  地质学清楚地表明,各个陆地都曾发生过巨大的物理变化,因此,我们可以预料生物在自然状况下曾经发生变异,有如它们在家养状况下曾经发生变异那样。如果在自然状况下有任何变异的话,那么要说自然选择不曾发生作用,那就是无法解释的事实了。常常有人主张,变异量在自然状况下是一种严格有限制的量,但是这个主张是不能证实的。人,虽然只是作用于外部性状而且其结果是莫测的,却能够在短暂的时期内由累积家养生物的个体差异而产生巨大的结果;并且每一个人都承认物种呈现有个体差异。但是,除了个体差异外,一切博物学者都承认有自然变种存在,这些自然变种被认为有足够的区别而值得在分类学著作中加以记载。没有人曾经在个体差异和轻微变种之间,或者在特征更加明确的变种和亚种之间,以及亚种和物种之间划出任何明显的区别。在分离的大陆上,在同一大陆上而被任何种类的障碍物分开的不同区域,以及在遥远的岛上,有大量的生物类型存在,有些有经验的博物学者把它们列为变种,另一些博物学者竟把它们列为地理族或亚种,还有一些博物学者把它们列为不同的虽然是密切近似的物种!
  那么,如果动物和植物的确发生变异,不管其如何轻微或者缓慢;只要这等变异或个体差异在任何方面是有利的,为什么不会通过自然选择即最适者生存而被保存下来和累积起来呢?人既能耐心选择对他有用的变异,为什么在变化着的和复杂的生活条件下有利于自然生物的变异不会经常发生,并且被保存,即被选择呢?对于这种在悠久年代中发生作用并严格检查每一生物的整个体制、构造和习性——助长好的并排除坏的——的力量能够加以限制吗?对于这种缓慢地并美妙地使每一类型适应于最复杂的生活关系的力量,我无法看到有什么限制,甚至如果我们不看得更远,自然选择学说似乎也是高度可信的。我已经尽可能公正地复述了对方提出的难点和异议:现在让我们转来谈一谈支持这个学说的特殊事实和论点罢。
  物种只是特征强烈显著的、稳定的变种,而且每一物种首先作为变种而存在,根据这一观点,我们便能理解,在普通假定由特殊创造行为产生出来的物种和公认为由第二性法则产生出来的变种之间,为什么没有一条界线可定。根据这同一观点,我们还能理解在一个属的许多物种曾经产生出来的而且现今仍为繁盛的地区,为什么这些物种要呈现许多变种;因为在形成物种很活跃的地方,按照一般的规律,我们可以预料它还在进行;如果变种是初期的物种,情形就确是这样。还有,大属的物种如果提供较大数量的变种,即初期物种,那么它们在某种程度上就会保持变种的性状;因为它们之间的差异量比小属的物种之间的差异量为小。大属的密切近似物种显然在分布上要受到限制,并且它们在亲缘关系上围绕着<敏感詞>物种聚成小群——这两方面都和变种相似。根据每一物种都是独立创造的观点,这些关系就是奇特的,但是如果每一物种都是首先作为变种而存在的话,那么这些关系便是可以理解的了。
  各个物种都有按照几何级数繁殖率而过度增加数量的倾向;而且各个物种的变异了的后代由于它们在习性上和构造上更加多样化的程度,便能在自然组成中攫取许多大不相同的场所而增加它们的数量,因此自然选择就经常倾向于保存任何一个物种的最分歧的后代。所以在长久连续的变异过程中,同一物种的诸变种所特有的轻微差异便趋于增大而成为同一属的诸物种所特有的较大差异。新的、改进了的变种不可避免地要排除和消灭掉旧的、改进较少的和中间的变种;这样,物种在很大程度上就成为确定的、界限分明的了。每一纲中属于较大群的优势物种有产生新的和优势的类型的倾向;结果每一大群便倾向于变得更大、同时在性状上更加分歧。但是所有的群不能都这样继续增大,因为这世界不能容纳它们,所以比较占优势的类型就要打倒比较不占优势的类型。这种大群继续增大以及性状继续分歧的倾向,加上不可避免的大量绝灭的事情,说明了一切生物类型都是按照群之下又有群来排列的,所有这些群都被包括在曾经自始至终占有优势的少数大纲之内。把一切生物都归在所谓“自然系统”之下的这一伟大事实,如果根据特创说,是完全不能解释的。
  自然选择仅能借着轻微的、连续的、有利的变异的累积而发生作用,所以它不能产生巨大的或突然的变化;它只能按照短小的和缓慢的步骤而发生作用。因此,“自然界里没有飞跃”这一格言,已被每次新增加的知识所证实,根据这个学说,它就是可以理解的了。我们能够理解,为什么在整个自然界中可以用几乎无限多样的手段来达到同样的一般目的,因为每一种特点,一旦获得,就可以长久遗传下去,并且已经在许多不同方面变异了的构造势必适应同样的一般目的。总之,我们能够理解,为什么自然界在变异上是浪费的,虽然在革新上是吝啬的。但是如果每一物种都是独立创造出来的话,那么,为什么这应当是自然界的一条法则,就没有人能够解释了。
  依我看来,根据这个学说,还有许多<敏感詞>事实可以得到解释。这是多么奇怪:一种啄木鸟形态的鸟会在地面上捕食昆虫;很少或永不游泳的高地的鹅具有蹼脚;一种像鸽的鸟潜水并吃水中的昆虫;一种海燕具有适于海雀生活的习性和构造!还有无穷尽的<敏感詞>例子也都是这样的。但是根据以下的观点,即各个物种都经常在力求增加数量,而且自然选择总是在使每一物种的缓慢变异着的后代适应于自然界中未被占据或占据得不好的地方,那么上述事实就不足为奇,甚至是可以料想到的了。
  我们能够在某种程度上理解整个自然界中怎么会有这么多的美;因为这大部分是由选择作用所致。按照我们的感觉,美并不是普遍的,如果有人看见过某些毒蛇、某些鱼、某些具有丑恶得像歪扭人脸那样的蝙蝠,他们都会承认这一点。性选择曾经把最灿烂的颜色、优美的样式,和<敏感詞>装饰物给予雄者,有时也给予许多鸟类、蝴蝶和<敏感詞>动物的两性。关于鸟类,性选择往往使雄者的鸣声既可取悦于雌者,也可取悦于我们的听觉。花和果实由于它的彩色与绿叶相衬显得很鲜明,因此花就容易地被昆虫看到、被访问和传粉,而且种籽也会被鸟类散布开去。某些颜色、声音和形状怎样会给予人类和低于人类的动物以快感,——即最简单的美感在最初是怎样获得的,——我们并不知道,有如我们不知道某些味道和香气最初怎样变成为适意的一样。
  因为自然选择由竞争而发生作用,它使各个地方的生物得到适应和改进,这只是对其同位者而言;所以任何一个地方的物种,虽然按照通常的观点被假定是为了那个地区创造出来而特别适应那个地区的,却被从<敏感詞>地方移来的归化生物所打倒和排挤掉,对此我们不必惊奇。自然界里的一切设计,甚至像人类的眼睛,就我们所能判断的来说,并不是绝对完全的;或者它们有些与我们的适应观念不相容,对此也不必惊奇。蜜蜂的刺,当用来攻击敌人时,会引起蜜蜂自己的死亡;雄蜂为了一次交配而被产生出那么多,交配之后便被它们的不育的姊妹们杀死;枞树花粉的可惊的浪费;后蜂对于它的能育的女儿们所具有的本能仇恨;姬蜂在毛虫的活体内求食;以及<敏感詞>这类的例子,也不足为奇。从自然选择学说看来。奇怪的事情实际上倒是没有发现更多的缺乏绝对完全化的例子。
  支配产生变种的复杂而不甚理解的法则,就我们所能判断的来说,与支配产生明确物种的法则是相同的。在这两种场合里,物理条件似乎产生了某种直接的和确定的效果,但这效果有多大,我们却不能说。这样,当变种进入任何新地点以后,它们有时便取得该地物种所固有的某些性状。对于变种和物种,使用和不使用似乎产生了相当的效果;如果我们看到以下情形,就不可能反驳这一结论。例如,具有不能飞翔的翅膀的大头鸭所处的条件几乎与家鸭相同;穴居的栉鼠有时是盲目的,某些鼹鼠通常是盲目的,而且眼睛上被皮肤遮盖着;栖息在美洲和欧洲暗洞里的许多动物是盲目的。对于变种和物种,相关变异似乎发生了重要作用,因此,当某一部分发生变异时,<敏感詞>部分也必然要发生变异。对于变种和物种,长久亡失的性状有时会在变种和物种中复现。马属的若干物种以及它们的杂种偶尔会在肩上和腿上出现条纹,根据特创说,这一事实将如何解释呢!如果我们相信这些物种都是从具有条纹的祖先传下的,就像鸽的若干家养品种都是从具有条纹的蓝色岩鸽传下来的那样,那么上述事实的解释将是如何简单呀!
  按照每一物种都是独立创造的通常观点,为什么物种的性状,即同属的诸物种彼此相区别的性状比它们所共有的属的性状更多变异呢?比方说,一个属的任何一种花的颜色,为什么当<敏感詞>物种具有不同颜色的花时,要比当一切物种的花都具有同样颜色时,更加容易地发生变异呢?如果说物种只是特征很显著的变种,而且它们的性状已经高度地变得稳定了,那么我们就能够理解这种事实;因为这些物种从一个共同祖先分枝出来以后它们在某些性状上已经发生过变异了,这就是这些物种彼此赖以区别的性状;所以这些性状比在长时期中遗传下来而没有变化的属的性状就更加容易地发生变异。根据特创说,就不能解释在一属的单独一个物种里,以很异常方式发育起来的因而我们可以自然地推想对于那个物种有巨大重要性的器官,为什么显著容易地发生变异;但是,根据我们的观点,自从若干物种由一个共同祖先分枝出来以后,这种器官已经进行了大量的变异和变化,因此我们可以预料这种器官一般还要发生变异。但是一种器官,如同蝙蝠的翅膀,可能以最异常的方式发育起来,但是,如果这种器官是许多附属类型所共有的,也就是说,如果它曾是在很长久时期内被遗传下来的,这种器官并不会比<敏感詞>构造更容易地发生变异;因为在这种情形下,长久连续的自然选择就会使它变为稳定的了。看一看本能,某些本能虽然很奇异,可是按照连续的、轻微的、而有益的变异之自然选择学说,它们并不比肉体构造提供了更大的难点。这样,我们便能理解为什么自然在赋予同纲的不同动物以若干本能时,是以级进的步骤进行活动的。我曾企图示明级进原理对于蜜蜂可赞美的建筑能力提供了多么重要的解释。在本能的改变中,习性无疑往往发生作用;但它并不是肯定不可缺少的,就像我们在中性昆虫的情形中所看到的那样,中性昆虫并不留下后代遗传有长久连续的习性的效果。根据同属的一切物种都是从一个共同祖先传下来的并且遗传了许多共同性状这一观点,我们便能了解近似物种当处在极不相同的条件之下时,怎么还具有几乎同样的本能;为什么南美洲热带和温带的鸫像不列颠的物种那样地用泥土涂抹它们的巢的内侧。根据本能是通过自然选择而缓慢获得的观点,我们对某些本能并不完全,容易发生错误,而且许多本能会使<敏感詞>动物蒙受损失,就不必大惊小怪了。
回复

使用道具 举报

34
 楼主| 发表于 2008-1-20 14:06:58 | 只看该作者
如果物种只是特征很显著的、稳定的变种,我们便能立刻看出为什么它们的杂交后代在类似亲体的程度上和性质上——在由连续杂交而相互吸收方面以及在<敏感詞>这等情形方面——就像公认的变种杂交后代那样地追随着同样的复杂法则,如果物种是独立创造的,并且变种是通过第二性法则产生出来的,这种类似就成为奇怪的事情了。
  如果我们承认地质纪录不完全到极端的程度,那么地质纪录所提供的事实就强有力地支持了伴随着变异的生物由来学说。新的物种缓慢地在连续的间隔时间内出现;而不同的群经过相等的间隔时间之后所发生的变化量是大不相同的。物种和整个物群的绝灭,在有机世界的历史中起过非常显著的作用,这几乎不可避免地是自然选择原理的结果;因为旧的类型要被新而改进了的类型排挤掉。单独一个物种也好,整群的物种也好,当普通世代的链条一旦断绝时,就不再出现了。优势类型的逐渐散布,以及它们后代的缓慢变异,使得生物类型经过长久的间隔时间以后,看来好像是在整个世界范围内同时发生变化似的。各个地质层的化石遗骸的性状在某种程度上是介于上面地质层和下面地质层的化石遗骸之间的,这一事实可以简单地由它们在系统链条中处于中间地位来解释。一切绝灭生物都能与一切现存生物分类在一起,这一伟大事实是现存生物和绝灭生物都是共同祖先的后代的自然结果。因为物种在它们的由来和变化的悠久过程中一般已在性状上发生了分歧,所以我们便能理解为什么比较古代的类型,或每一群的早期祖先,如此经常地在某种程度上处于现存群之间的位置。总之,现代类型在体制等级上一般被看做比古代类型为高;而且它们必须是较高级的,因为未来发生的、比较改进了的类型在生活斗争中战胜了较老的和改进较少的类型;它们的器官一般也更加专业化,以适于不同机能。这种事实与无数生物尚保存简单的而很少改进的适于简单生活条件的构造是完全一致的;同样地,这与某些类型在系统的各个阶段中为了更好的适于新的、退化的生活匀性而在体制上退化了的情形也是一致的。最后,同一大陆的近似类型——如澳洲的有袋类、美洲的贫齿类和<敏感詞>这类例子——的长久延续的奇异法则也是可以理解的,因为在同一地区里,现存生物和绝灭生物由于系统的关系会是密切近似的。
  看一看地理分布,如果我们承认,由于以前的气候变化和地理变化以及由于许多偶然的和未知的散布方法,在悠长的岁月中曾经有过从世界的某一部分到另一部分的大量迁徙,那么根据伴随着变异的生物由来学说,我们便能理解有关“分布”上的大多数主要事实。我们能够理解,为什么生物在整个空间内的分布和在整个时间内的地质演替会有这么动人的平行现象;因为在这两种情形里,生物通常都由世代的纽带所连结,而且变异的方法也是一样的。我们也体会了曾经引起每一个旅行家注意的奇异事实的全部意义,即在同一大陆上,在最不相同的条件下,在炎热和寒冷下,在高山和低地上,在沙漠和沼泽里,每一大纲里的生物大部分是显然相关联的;因为它们都是同一祖先和早期移住者的后代。根据以前迁徙的同一原理,在大多数情形里它与变异相结合,我们借冰期之助,便能理解在最遥远的高山上以及在北温带和南温带中的某些少数植物的同一性,以及许多<敏感詞>生物的密切近似性;同样地还能理解,虽然被整个热带海洋隔开的北温带和南温带海里的某些生物的密切相似性。虽然两个地区呈现着同一物种所要求的密切相似的物理条件,如果这两个地区在长久时期内是彼此分开的,那么我们对于它们的生物的大不相同就不必大惊小怪;因为,由于生物和生物之间的关系是一切关系中的最重要关系,而且这两个地区在不同时期内会从<敏感詞>地区或者彼此相互接受不同数量的移住者,所以这两个地区中的生物变异过程就必然是不同的。
  依据谱系以后发生变化的这个迁徙的观点,我们便能理解为什么只有少数物种栖息在海洋岛上,而其中为什么有许多物种是特殊的即本地特有的类型。我们清楚的知道那些不能横渡广阔海面的动物群的物种,如蛙类和陆栖哺乳类,为什么不栖息在海洋岛上;另一方面,还可理解,像蝙蝠这些能够横渡海洋的动物,其新而特殊的物种为什么往往见于离开大陆很远的岛上。海洋岛上有蝙蝠的特殊物种存在,却没有一切<敏感詞>陆栖哺乳类,根据独立创造的学说,这等情形就完全不能得到解释了。
  任何两个地区有密切近似的或代表的物种存在,从伴随着变异的生物由来学说的观点看来,是意味着同一亲类型以前曾经在这两个地区栖息过;并且,无论什么地方,如果那里有许多密切近似物种栖息在两个地区,我们必然还会在那里发现两个地区所共有的某些同一物种。无论在什么地方,如果那里有许多密切近似的而区别分明的物种发生,那么同一群的可疑类型和变种也会同样地在那里发生。各个地区的生物必与移入者的最近根源地的生物有关联,这是具有高度一般性的法则。在加拉帕戈斯群岛、胡安·斐尔南德斯群岛(Juar Fernandez)①以及<敏感詞>美洲岛屿上的几乎所有的植物和动物与邻近的美洲大陆的植物和动物的动人关系中,我们看到这一点;也在佛得角群岛以及<敏感詞>非洲岛屿上的生物与非洲大陆生物的关系中看到这一点。必须承认,根据特创说,这些事实是得不到解释的。
  我们已经看到,一切过去的和现代的生物都可群下分群,而且绝灭的群往往介于现代诸群之间,在这等情形下,它们都可以归入少数的大纲内,这一事实,根据自然选择及其所引起的绝灭和性状分歧的学说,是可以理解的。根据这些同样的原理,我们便能理解,每一纲里的类型的相互亲缘关系为什么是如此复杂和曲折的。我们还能理解,为什么某些性状比<敏感詞>性状在分类上更加有用;——为什么适应的性状虽然对于生物具有高度的重要性,可是在分类上却几乎没有任何重要性;为什么从残迹器官而来的性状,虽然对于生物没有什么用处,可是往往在分类上具有高度的价值;还有,胚胎的性状为什么往往是最有价值的。一切生物的真实的亲缘关系,与它们的适应性的类似相反,是可以归因于遗传或系统的共同性的。“自然系统”是一种依照谱系的排列,依所获得的差异诸级,用变种、物种、属、科等术语来表示的;我们必须由最稳定的性状,不管它们是什么,也不管在生活上多么不重要,去发现系统线。
  人的手、蝙蝠的翅膀、海豚的鳍和马的腿都由相似的骨骼构成,——长颈鹿颈和象颈的脊椎数目相同,——以及无数<敏感詞>的这类事实,依据伴随着缓慢的、微小而连续的变异的生物由来学说,立刻可以得到解释,蝙蝠的翅膀和腿,——螃蟹的颚和腿,——花的花瓣、雄蕊和雌蕊,虽然用于极其不同的目的,但它们的结构样式都相似。这些器官或部分在各个纲的早期祖先中原来是相似的,但以后逐渐发生了变异,根据这样观点,上述的相似性在很大程度上还是可以得到解释的。连续变异不总是在早期年龄中发生,并且它的遗传是在相应的而不是在更早的生活时期;依据这一原理,我们更可清楚地理解,为什么哺乳类、鸟类、爬行类和鱼类的胚胎会如此密切相似,而在成体类型中又如此不相似。呼吸空气的哺乳类或鸟类的胚胎就像必须依靠很发达的鳃来呼吸溶解在水中的空气的鱼类那样地具有鳃裂和弧状动脉,对此我们用不到大惊小怪。
  不使用,有时借自然选择之助,往往会使在改变了的生活习性或生活条件下变成无用的器官而缩小;根据这一观点,我们便能理解残迹器官的意义。但是不使用和选择一般是在每一生物到达成熟期并且必须在生存斗争中发挥充分作用的时期,才能对每一生物发生作用,所以对于在早期生活中的器官没有什么影响力;因此那器官在这早期年龄里不会被缩小或成为残迹的。比方说,小牛从一个具有很发达牙齿的早期祖先遗传了牙齿,而它们的牙齿从来不穿出上颚牙床肉;我们可以相信,由于舌和颚或唇通过自然选择变得非常适于吃草,而无需牙齿的帮助,所以成长动物的牙齿在以前就由于不使用而缩小了;可是在小牛中,牙齿却没有受到影响,并且依据遗传在相应年龄的原理,它们从遥远的时期一直遗传到今天。带着毫无用处的鲜明印记的器官,例如小牛胚胎的牙齿或许多甲虫的连合鞘翅下的萎缩翅,竟会如此经常发生,根据每一生物以及它的一切不同部分都是被特别创造出来的观点,这将是多么完全不可理解的事情。可以说“自然”曾经煞费苦心地利用残迹器官、胚胎的以及同原的构造来泄露她的变化的设计,只是我们太盲目了,以致不能理解她的意义。
  上述事实和论据使我完全相信,物种在系统的悠久过程中曾经发生变化,对此我已做了复述。这主要是通过对无数连续的、轻微的、有利的变异进行自然选择而实现的;并且以重要的方式借助于器官的使用和不使用的遗传效果;还有不重要的方式,即同不论过去或现在的适应性构造有关,它们的发生依赖外界条件的直接影响,也依赖我们似乎无知的自发变异。看来我以前是低估了在自然选择以外导致构造上永久变化的这种自发变异的频率和价值。但是因为我的结论最近曾被严重地歪曲,并且说我把物种的变异完全归因于自然选择,所以请让我指出,在本书的第一版中,以及在以后的几版中,我曾把下面的话放在最显著的地位——即《绪论》的结尾处:“我相信‘自然选择’是变异的最主要的但不是独一无二的手段。”这话并没有发生什么效果。根深柢固的误解力量是大的;但是科学的历史示明,这种力量幸而不会长久延续。
  几乎不能设想,一种虚假的学说会像自然选择学说那样地以如此令人满意的方式解释上述若干大类的事实。最近有人反对说,这是一种不妥当的讨论方法;但是,这是用来判断普通生活事件的方法,并且是最伟大的自然哲学者们所经常使用的方法。光的波动理论就是这样得来的;而地球环绕中轴旋转的信念,直到最近还没有直接的证据。要说科学对于生命的本质或起源这个更高深的问题还没有提出解释,这并不是有力的异议。谁能够解释什么是地心吸力的本质呢?现在没有人会反对遵循地心吸力这个未知因素所得出的结果;尽管列不尼兹(Leibnitz)以前曾经责难牛顿,说他引进了“玄妙的性质和奇迹到哲学里来”。
  本书所提出的观点为什么会震动任何人的宗教感情,我看不出有什么好的理由。要想指出这种印象是如何短暂,记住以下情形就够了:人类曾有过最伟大发现,即地心吸力法则,也被列不尼兹抨击为“自然宗教的覆灭,因而推理地也是启示宗教的覆灭”。一位著名的作者兼神学者写信给我说,“他已逐渐觉得,相信‘神’创造出一些少数原始类型,它们能够自己发展成<敏感詞>必要类型,与相信‘神’需要一种新的创造作用以补充‘神’的法则作用所引起的空虚,同样都是崇高的‘神’的观念”。
  可以质问,为什么直到最近差不多所有在世的最卓越的博物学者和地质学者都不相信物种的可变性呢。不能主张生物在自然状况下不发生变异;不能证明变异量在悠久年代的过程中是一种有限的量;在物种和特征显著的变种之间未曾有、或者也不能有清楚的界限。不能主张物种杂交必然是不育的,而变种杂交必然是能育的;或者主张不育性是创造的一种特殊禀赋和标志。只要把地球的历史想成是短暂的,几乎不可避免地就要相信物种是不变的产物;而现在我们对于时间的推移已经获得某种概念,我们就不可没有根据地去假定地质的纪录是这样完全,以致如果物种曾经有过变异,地质就会向我们提供有关物种变异的明显证据。
  但是,我们天然地不愿意承认一个物种会产生<敏感詞>不同物种的主要原因,在于我们总是不能立即承认巨大变化所经过的步骤,而这些步骤又是我们不知道的。这和下述情形一样:当莱尔最初主张长行的内陆岩壁的形成和巨大山谷的凹下都是由我们现在看到的依然发生作用的因素所致,对此许多地质学者都感到难于承认。思想大概不能掌握即便是一百万年这用语的充分意义;而对于经过几乎无限世代所累积的许多轻微变异,其全部效果如何更是不能综合领会的了。
  虽然我完全相信本书在提要的形式下提出来的观点是正确的;但是,富有经验的博物学者的思想在岁月的悠久过程中装满了大量事实,其观点与我的观点直接相反,我并不期望说服他们。在“创造的计划”、“设计的一致”之类的说法下,我们的无知多么容易被荫蔽起来,而且还会只把事实复述一遍就想像自己已经给予了一种解释。无论何人,只要他的性情偏重尚未解释的难点,而不重视许多事实的解释他就必然要反对这个学说。在思想上被赋有很大适应性的并且已经开始怀疑物种不变性的少数博物学者可以受到本书的影响;但是我满怀信心地看着将来,——看着年轻的、后起的博物学者,他们将会没有偏见地去看这个问题的两方面。已被引导到相信物种是可变的人们,无论是谁,如果自觉地去表示他的确信,他就做了好事;因为只有这样,才能把这一问题所深深受到的偏见的重负移去。
  几位卓越的博物学者最近发表他们的信念,认为每一属中都有许多公认的物种并不是真实的物种;而认为<敏感詞>物种才是真实的,就是说,被独立创造出来的。依我看来,这是一个奇怪的结论。他们承认,直到最近还被他们自己认为是特别创造出来的、并且大多数博物学者也是这样看待它们的、因而具有真实物种的一切外部特征的许多类型,是由变异产生的,但是他们拒绝把这同一观点引伸到<敏感詞>稍微不同的类型。虽然如此,他们并不冒充他们能够确定,或者甚至猜测,哪些是被创造出来的生物类型,哪些是由第二性法则产生出来的生物类型。他们在某一种情形下承认变异是真实原因,而在另一种情形下却又断然否认它,而又不指明这两种情形有何区别。总有一天这会被当做奇怪的例子来说明先人之见的盲目性。这些作者对奇迹般的创造行为并不比对通常的生殖感到更大的惊奇。但是他们是否真地相信,在地球历史的无数时期中,某些元素的原子会突然被命令骤然变成活的组织呢?他们相信在每次假定的创造行为中都有一个个体或许多个体产生出来吗?所有无限繁多种类的动物和植物在被创造出来时究竟是卵或种籽或充分长成的成体吗?在哺乳类的情形下,它们是带着营养的虚假印记从母体子宫内被创造出来的吗?毫无疑问,相信只有少数生物类型或只有某一生物类型的出现或被创造的人并不能解答这类问题的。几位作者曾主张,相信创造成百万生物与创造一种生物是同样容易的;但是莫波丢伊(Maupertuis)的“最小行为”的哲学格言会引导思想更愿意接受较少的数目;但是肯定地我们不应相信,每一大纲里的无数生物在创造出来时就具有从单独一个祖先传下来的明显的、欺人的印记。
  作为事物以前状态的纪录,我在以上诸节和<敏感詞>地方记下了博物学者们相信每一物种都是分别创造的若干语句;我因为这样表达意见而大受责难。但是,毫无疑问,在本书第一版出现时,这是当时一般的信念。我以前向很多博物学者谈论过进化的问题,但从来没有一次遇到过任何同情的赞成。在那个时候大概有某些博物学者的确相信进化,但是他们或者沉默无言,或者叙述得这么模糊以致不容易理解他们所说的意义。现在的情形就完全不同了,几乎每一博物学者都承认伟大的进化原理。尽管如此,还有一些人,他们认为物种曾经通过十分不能解释的方法而突然产生出新的、完全不同的类型:但是,如我力求示明的,大量的证据可以提出来反对承认巨大而突然的变化。就科学的观点而论,为进一步研究着想,相信新的类型以不能理解的方法从旧的、十分不同的类型突然发展出来,比相信物种从尘土创造出来的旧信念,并没有什么优越之处。
  可以问,我要把物种变异的学说扩展到多远。这个问题是难于回答的,因为我们所讨论的类型愈是不同,有利于系统一致性的论点的数量就愈少,其说服力也愈弱。但是最有力的论点可以扩展到很远。整个纲的一切成员被一条亲缘关系的连锁连结在一起,一切都能够按群下分群的同一原理来分类。化石遗骸有时有一种倾向,会把现存诸目之间的巨大空隙填充起来。
  残迹状态下的器官清楚地示明了,一种早期祖先的这种器官是充分发达的;在某些情形里这意味着它的后代已发生过大量变异。在整个纲里,各种构造都是在同一样式下形成的,而且早期的胚胎彼此密切相似。所以我不能怀疑伴随着变异的生物由来学说把同一大纲或同一界的一切成员都包括在内。我相信动物至多是从四种或五种祖先传下来的,植物是从同样数目或较少数目的祖先传下来的。
  类比方法引导我更进一步相信,一切动物和植物都是从某一种原始类型传下来的。但是类比方法可能把我们导入迷途。虽然如此,一切生物在它们的化学成分上、它们的细胞构造上、它们的生长法则上、它们对于有害影响的易感性上都有许多共同之点。我们甚至在以下那样不重要的事实里也能看到这一点,即同一毒质常常同样地影响各种植物和动物;瘿蜂所分泌的毒质能引起野蔷薇或橡树产生畸形。在一切生物中,或者某些最低等的除外,有性生殖似乎在本质上都是相似的。在一切生物中,就现在所知道的来说,最初的胚胞是相同的;所以一切生物都是从共同的根源开始的。如果当我们甚至看一看这两个主要部分——即看一看动物界和植物界——某些低等类型如此具有中间的性质,以致博物学者们争论它们究竟应该属于哪一界。正如阿萨·格雷教授所指出的,“许多低等藻类的孢子和<敏感詞>生殖体可以说起初在特性上具有动物的生活,以后无可怀疑地具有植物的生活”。所以,依据伴随着性状分歧的自然选择原理,动物和植物从这些低等的中间类型发展出来,并不是不可信的;而且,如果我们承认了这一点,我们必须同样地承认曾经在这地球上生活过的一切生物都是从某一原始类型传下来的。但是这推论主要是以类比方法为根据的,它是否被接受并无关紧要。正如刘易斯先生所主张的,毫无疑问,在生命的黎明期可能就有许多本同的类型发生;但是,倘真如此,则我们便可断定,只有很少数类型曾经遗留下变异了的后代。因为,正如我最近关于每一大界、如“脊椎动物”,“关节动物”等的成员所说的,在它们的胚胎上、同原构造上、残迹构造上,我们都有明显的证据可以证明每一界里的一切成员都是从单独一个祖先传下来的。
  我在本书所提出的以及华莱斯先生所提出的观点,或者有关物种起源的类似的观点,一旦被普遍接受以后,我们就能够隐约地预见到在博物学中将会发生重大革命。分类学者将能和现在一样地从事劳动,但是他们不会再受到这个或那个类型是否为真实物种这一可怕疑问的不断搅扰。这,我确信并且我根据经验来说,对于各种难点将不是微不足道的解脱。有关的五十个物种的不列颠树莓类(bramble)是否为真实物种这一无休止的争论将会结束。分类学者所做的只是决定(这点并不容易)任何类型是否充分稳定并且能否与<敏感詞>类型有所区别,而给它下一个定义;如果能够给它下一定义,那就要决定那些差异是否充分重要,值得给以物种的名称。后述一点将远比它现在的情形更加重要;因为任何两个类型的差异,不管如何轻微,如果不被中间诸级把它们混合在一起,大多数博物学者就会认为这两个类型都足以提升到物种的地位。
  从此以后,我们将不得不承认物种和特征显著的变种之间的唯一区别是:变种已被知道或被相信现在被中间级进联结起来,而物种却是在以前被这样联结起来的。因此,在不拒绝考虑任何两个类型之间目前存在着中间级进的情况下,我们将被引导更加仔细地去衡量、更加高度地去评价它们之间的实际差异量。十分可能,现在一般被认为只是变种的类型,今后可能被相信值得给以物种的名称;在这种情形下,科学的语言和普通的语言就一致了。总而言之,我们必须用博物学者对待属那样的态度来对待物种,他们承认属只不过是为了方便而做出的人为组合。这或者不是一个愉快的展望;但是,对于物种这一术语的没有发现的、不可能发现的本质,我们至少不会再做徒劳的探索。
  博物学的<敏感詞>更加一般的部门将会大大地引起兴趣。博物学者所用的术语如亲缘关系、关系、模式的同一性、父性、形态学、适应的性状、残迹的和萎缩的器官等等,将不再是隐喻的,而会有它的鲜明的意义。当我们不再像未开化人把船看做是完全不可理解的东西那样地来看生物的时候;当我们把自然界的每一产品看成是都具有悠久历史的时候;当我们把每一种复杂的构造和本能看成是各各对于所有者都有用处的设计的综合,有如任何伟大的机械发明是无数工人的劳动、经验、理性以及甚至错误的综合的时候;当我们这样观察每一生物的时候,博物学的研究将变得——我根据经验来说——多么更加有趣呀!
  在变异的原因和法则、相关法则、使用和不使用的效果、外界条件的直接作用等等方面,将会开辟一片广大的、几乎未经前人踏过的研究领域。家养生物的研究在价值上将大大提高。人类培育出来一个新品种,比起在已经记载下来的无数物种中增添一个物种,将会成为一个更加重要、更加有趣的研究课题。我们的分类,就它们所能被安排的来说,将是按谱系进行的;那时它们才能真地显示出所谓“创造的计划”。当我们有一确定目标的时候,分类的规则无疑会变得更加简单。我们没有得到任何谱系或族徽;我们必须依据各种长久遗传下来的性状去发现和追踪自然谱系中的许多分歧的系统线。残迹器官将会确实无误地表明长久亡失的构造的性质。称做异常的、又可以富于幻想地称做活化石的物种和物种群,将帮助我们构成一张古代生物类型的图画。胚胎学往往会给我们揭露出每一大纲内原始类型的构造,不过多少有点模糊而已。
  如果我们能够确定同一物种的一切个体以及大多数属的一切密切近似物种,曾经在不很遥远的时期内从第一个祖先传下来,并且从某一诞生地迁移出来;如果我们更好地知道迁移的许多方法,而且依据地质学现在对于以前的气候变化和地平面变化所提出的解释以及今后继续提出的解释,那么我们就确能以令人赞叹的方式追踪出全世界生物的过去迁移情况。甚至在现在,如果把大陆相对两边的海栖生物之间的差异加以比较,而且把大陆上各种生物与其迁移方法显然有关的性质加以比较,那么我们就能对古代的地理状况多少提出一些说明。
  地质学这门高尚的科学,由于地质纪录的极端不完全而损失了光辉。埋藏着生物遗骸的地壳不应被看做是一个很充实的博物馆,它所收藏的只是偶然的、片段的、贫乏的物品而已。每一含有化石的巨大地质层的堆积应该被看做是由不常遇的有利条件来决定的,并且连续阶段之间的空白间隔应该被看做是极长久的。但是通过以前的和以后的生物类型的比较,我们就能多少可靠地测出这些间隔的持续时间。当我们试图依据生物类型的一般演替,把两个并不含有许多相同物种的地质层看做严格属于同一时期时,必须谨慎。因为物种的产生和绝灭是由于缓慢发生作用的、现今依然存在的原因,而不是由于创造的奇迹行为;并且因为生物变化的一切原因中最重要的原因是一种几乎与变化的或者突然变化的物理条件无关的原因,即生物和生物之间的相互关系,——一种生物的改进会引起<敏感詞>生物的改进或绝灭;所以,连续地质层的化石中的生物变化量虽不能作为一种尺度来测定实际的时间过程,但大概可以作为一种尺度来测定相对的时间过程。可是,许多物种在集体中可能长时期保持不变,然而在同一时期里,其中若干物种,由于迁徙到新的地区并与外地的同住者进行竞争,可能发生变异;所以我们对于把生物变化作为时间尺度的准确性,不必有过高的评价。
  我看到了将来更加重要得多的广阔研究领域。心理学将稳固地建筑在赫伯特·斯潘塞先生所已良好奠定的基础上,即每一智力和智能都是由级进而必然获得的。人类的起源及其历史也将由此得到大量说明。
  最卓越的作者们对于每一物种曾被独立创造的观点似乎感到十分满足。依我看来,世界上过去的和现在的生物之产生和绝灭就像决定个体的出生和死亡的原因一样地是由于第二性的原因,这与我们所知道的“造物主”在物质上打下印记的法则更相符合。当我把一切生物不看作是特别的创造物,而看作是远在寒武系第一层沉积下来以前就生活着的某些少数生物的直系后代,依我看来,它们是变得尊贵了。从过去的事实来判断,我们可以稳妥地推想,没有一个现存物种会把它的没有改变的外貌传递到遥远的未来。并且在现今生活的物种很少把任何种类的后代传到极遥远的未来;因为依据一切生物分类的方式看来,每一属的大多数物种以及许多属的一切物种都没有留下后代,而是已经完全绝灭了。展望未来,我们可以预言,最后胜利的并且产生占有优势的新物种的,将是各个纲中较大的优势群的普通的、广泛分布的物种。既然一切现存生物类型都是远在寒武纪以前生存过的生物的直系后代,我们便可肯定,通常的世代演替从来没有一度中断过,而且还可确定,从来没有任何灾变曾使全世界变成荒芜。因此我们可以多少安心地去眺望一个长久的、稳定的未来。因为自然选择只是根据并且为了每一生物的利益而工作,所以一切肉体的和精神的禀赋都有向着完善化前进的倾向。
  凝视树木交错的河岸,许多种类的无数植物覆盖其上,群鸟鸣于灌木丛中,各种昆虫飞来飞去,蚯蚓在湿土里爬过,并且默想一下,这些构造精巧的类型,彼此这样相异,并以这样复杂的方式相互依存,而它们都是由于在我们周围发生作用的法则产生出来的,这岂非有趣之事。这些法则就其最广泛的意义来说,就是伴随着“生殖”的“生长”;几乎包含在生殖以内的“遗传”;由于生活条件的间接作用和直接作用以及由于使用和不使用所引起的变异:生殖率如此之高以致引起“生存斗争”,因而导致“自然选择”、并引起“性状分歧”和较少改进的类型的“绝灭”。这样,从自然界的战争里,从饥饿和死亡里,我们便能体会到最可赞美的目的,即高级动物的产生,直接随之而至。认为生命及其若干能力原来是由“造物主”注入到少数类型或一个类型中去的,而且认为在这个行星按照引力的既定法则继续运行的时候,最美丽的和最奇异的类型从如此简单的始端,过去,曾经而且现今还在进化着;这种观点是极其壮丽的。
回复

使用道具 举报

35
发表于 2008-8-5 21:03:53 | 只看该作者
这可是本好书啊,买了,但是搁在书橱里,还没有碰过。改天,肯定会去看看的。我接受一切有用的好书。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 註冊

本版积分规则

Copyright © 2004-2018 Imslr.com
Powered by Discuz! ( 粤ICP备16075051号-2 )
ShenZhenShi ZhiYin Technology Co., Ltd. 聯繫我們
快速回复 返回顶部 返回列表